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F o r  th e  FoKKER-PLANCK-equation fo r  a  p la s m a  th e  s y s te m  o f  m o m e n t e q u a t io n s  is  d e r iv e d . T h e  
h ig h e s t  o r d e r  m o m e n ts  c o n s id e r e d  a r e  t h e  c o m p o n e n ts  o f^ th e  h e a t  f lu x . F o r  th e s e  t h e  c o n d i t io n  m u s t  
b e  s a t i s f i e d  t h a t  th e y  a r e  s m a l l  c o m p a r e d  w i th  (5/2)p \/p /Q e  • All m o m e n ts  o f  lo w e r  o r d e r ,  e s p e c ia l ly  
t h e  d i f f e re n c e  v e lo c i ty  o f  e l e c t r o n s  a n d  io n s  ( i .e . th e  e l e c t r i c a l  c u r r e n t )  a n d  th e  a n i s o t r o p y  o f  
p r e s s u r e  a r e  a r b i t r a r y  i n  t h i s  a p p r o x i m a t io n .

Das Ziel dieser Arbeit ist, aus der B o ltz m a n n -  

Gleichung für ein Zwei-Komponenten-Plasma das 
zugehörige System der Momentengleichungen her­
zuleiten, und zwar unter Verwendung der F o k k e r — 

PLANCK-Näherung für das Stoßintegral. Diese N ä­
herung ist gültig unter der Voraussetzung, daß sieh 
innerhalb einer DEBYE-Kugel sehr viele Teilchen be­
finden, was in praktisch interessierenden Fällen mei­
stens zutrifft.

Die Theorie der Momentengleichungen ist zuerst 
von G r a d  behandelt worden, jedoch ohne Einbezie­
hung geladener Teilchen. K olodner  hat für den Fall 
kleiner Abweichungen vom thermischen Gleichgewicht 
die Theorie der Momentengleichungen auf ein Plasma 
angewandt (Lineare Näherung für das Stoßintegral).

In der vorliegenden Arbeit werden die Momenten­
gleichungen für das Plasma abgeleitet, wobei die 
Diffusionsgeschwindigkeit (d. h. die Differenz der 
mittleren Geschwindigkeiten der einzelnen Kompo­
nenten) und die Druckanisotropie beliebig sein sol­
len. Letztere Verallgemeinerung bedingt eine Ent­
wicklung der Geschwindigkeitsverteilung f ( W ) nach 
Orthogonalpolynomen über einer Gewichtsfunktion 
vom Typ

g ( W )  — exp[ — 04 w j2 -  a2 w 22 -  a3 w32] ,

wobei ax , a2 , a3 positive, voneinander unabhängige 
Konstanten sind (Abschnitt 3 ). Die Stoßintegrale 
lassen sich dann durch die Lösungen der Potential­
gleichungen

Acp{w) =  - 4 > n g ( W )  und A A y { w )  =  - 8 j z g ( w )

ausdrüdcen. Diese Lösungen kann man auf Einfach- 
Integrale zurückführen.

Es wird hier die von G ra d  diskutierte 13-Mo­
menten-Näherung benutzt, in welcher jede Gas­
komponente beschrieben wird durch partielle Dif­

ferentialgleichungen in Ort und Zeit für die 
Dichte ,o, die mittlere Geschwindigkeit der Kompo­
nente V =  { v t , v2 , v3} , den Drucktensor paß und 
den Wärmestrom sa . Eine wesentliche Einschrän­
kung ist dabei die Voraussetzung, daß die auf- 
tretenden Wärmeströme sa klein sind, d. h.

| Sa | <  f  P  V p / i<?e •

Wenn die Differenz der mittleren Geschwindigkeiten 
der einzelnen Komponenten beliebig sein soll, darf 
man nicht die übliche Definition der thermischen 
Energie einer Komponente (bezogen auf die Massen­
geschwindigkeit des Gesamtsystems) benutzen, son­
dern muß die mittlere Geschwindigkeit dieser Kom­
ponente als Referenzgeschwindigkeit nehmen.

1. Die Momentengleichungen

In diesem Abschnitt soll die Herleitung der Mo­
mentengleichungen kurz skizziert werden 1.

Die BoLTZMANN-Gleichung für ein aus geladenen 
Teilchen der Sorten r bestehendes Gas lautet (mit 
Benutzung der Summationskonvention) :

+  [4 r) (* ,< )+  <  (* ,« )• aJr)] - J ^  =  •

Es bedeuten hier: t die Zeit, X  den Ortsvektor mit 
den Komponenten x^ , u r̂) die Geschwindigkeits­
komponenten eines Teilchens der Sorte r im Labor­
system,

4r) ( X,  t) = (eW/m{r,)^ (^ i) 
die durch ein elektrisches Feld E ( X , t ) auf ein Teil-

1 Vgl. z. B. S. C h ap m an  u . T. G. C o w lin g , Mathematical Theory 
of Non-Uniform Gases, Cambridge University Press, Cam­
bridge 1953, S .322 ff.
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dien der Sorte r mit der Masse m W und der La­
dung e <T) ausgeübte Beschleunigung und

co(jJ (X , t ) =  Bfiv{X, t ) / m W c

die Gyrofrequenz für die Teilchensorte r. e r̂) und 
o>£> können, wie angedeutet, von Ort und Zeit ab- 
hängen. ist die Verteilungsfunktion
der Teilchensorte r. Der Term auf der rechten Seite 
von Gl. (1 ), (3/W /3<)s t, beschreibt die zeitliche 
Änderung der Verteilungsfunktion durch Stöße. 
En (x,  t ) und B Uy ( X,  t ) enthalten außer den äußeren 
Feldern auch noch „innere“ , welche durch Ladungs­
trennung und elektrische Ströme innerhalb des Gases 
hervorgerufen werden. Die Frage der Berechnung 
dieser inneren Felder soll in dieser Arbeit nicht an­
geschnitten werden. Es seien also E f, ( X , t )  und 
B u v { X , t ) die am Ort X  zur Zeit t  herrschenden Fel­
der, wie auch immer sie zustande gekommen sein 
mögen.

Man definiert die Momente der Funktion 
/ (r) ( t t ,  X,  t ) wie folgt

n ^ ( X , t )  =  J  /W (W(r), X, t) d tt(r), 
n «  v ^ i x ,  t) =  J u p f W  (U(r), X, t) d ll(r), (2)
Paß ( X,  t ) =  /n (r) J  w (ar) w^P / (r) (W (r), X,  t ) dl*(r),

Ä  { X,  t )  =  J  ( l l(r), X ,  t )  d ll(r),
< Ä . . . « ,  =  m W  /  w %  < > • . .  u , £ / «  ( t t « ,  X , t )  dI I « ,

wobei «4«=u<r> - » i f ’ t* , <)•

Diese Momente haben folgende physikalische Bedeu­
tung: nW (X, t) ist die Teilchendichte der Gaskom­
ponente r im Ortsraum und v ^ ( X ,  t) ist die mittlere 
Geschwindigkeit der Teilchensorte r. w £r) nennen wir 
Pekuliargeschwindigkeit. Das Moment zweiter Ord­
nung paß ist der Drucktensor, das Moment dritter 
Ordnung q $ v der Drucktransporttensor der Teil­
chensorte r. Kontrahiert man den Drucktransport- 
tensor, so erhält man die Vektorkomponenten des 
Wärmestroms s (aT)=  \  q . Für die höheren Mo­

mente lassen sich keine anschaulichen Interpretatio­
nen angeben. Die Momente sind offenbar (in allen 
Indizes) symmetrische Tensoren.

Die Momentengleichungen erhält man nun, indem 
man Gl. (1) mit den Funktionen

1, u £ \  m {-T) w(r)

multipliziert und über den Geschwindigkeitsraum in­
tegriert. Setzt man über die Funktion / «  ( t l (r\  X, i) 
voraus, daß die Integration über den Geschwindig­
keitsraum vertauschbar ist mit den Differentiationen 
nach Ort und Zeit und daß /( t l)  hinreichend schnell 
verschwindet für | II j —>■ oo , so folgt durch Integra­
tion von Gl. (1) die Kontinuitätsgleichung

! £ >  +  3 („«„<[>) _ 0.
at axu

Das Integral über den Stoßterm verschwindet, wenn 
bei Stößen die Teilchenzahl erhalten bleibt. Dies soll 
vorausgesetzt werden, d. h. Ionisationsprozesse u. ä. 
werden nicht betrachtet.

Multipliziert man Gl. (1) mit 4 r) und integriert 
dann, so erhält man die Bewegungsgleichung
dv?

d t
+  v(r) ^  ^  vf* +

1 SPgM
£>(r) Sxn

1
/ 3/(*■) \ d ll(r).

Das Integral über den Stoßterm liefert hier einen 
Beitrag, nämlich den Impulsaustausch der Kompo­
nente r mit den anderen Komponenten. Der Anteil, 
der von den Stößen mit gleichartigen Teilchen her­
rührt, muß natürlich verschwinden. Auch bei den 
Momenten höherer Ordnung verschwinden die In­
tegrale über (3//3<)st nicht. Es soll deshalb das 
„Stoßmoment“ definiert werden durch die Gleichung

'3/to \ 
dt

(3)

@a,«,...<** (*» t) = ̂ (r) I «4*JwS-wS ( 3{( } ) dW(r)-

Damit ergibt sich dann für die Momentengleichung zweiter und dritter Ordnung:
Sv.Spaß . . .  dPaß , 3qaßu Sv

5T ~ V" ~ 3 Prf-Tdt ax„ ax.. dx„ -=-=■ P ß u  -  OJau P a ß  ax„ +  [ß,  «] =  &aß

und SQaßy , Sqaßy 
St + V  ̂ dx„

SQ*ßylt
Sx„

Sv„
qaßy

(4)

(5)

+
Sv l 1 Sp
-  - qußy  -  (Vau q/xßy H--------- p ßy  ~  -----------------~ ~  pßy

9 e Sxß +  Iß iy, a) ] +  [y (<*. ß)  ] =  &*ßy •

q^ßrn ist das Moment vierter Ordnung und ,o =  m n(X t , ) . [ß,  a] bzw. [ß{a,  y ) ]  bezeichnet den Ausdrude, 
der aus der ersten eckigen Klammer durch Permutation der Indizes entsteht; a und y treten in [ß(a ,  7 )] 
symmetrisch auf.
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Für die allgemeine Momentengleichung N-ter Ordnung erhält man

3<C , 3flgV 3<«+1> 3*„ a (N)a

+  Z  l ( v a *=i i \^ «
-  CO I • a {N) +'-‘-'cfkMl V a i . . .  a j r - i  aic+i... cts n '

(N—i) , a (2> 
/ 'a i... a t - i  at+i...ajv / ( g ( l )_

a* 3x = @ f >.

und Elektronen untersucht werden. Um die Teilchen- 
sorten-Indizes i und e nach Möglichkeit zu eliminie­
ren, sollen folgende Abkürzungen benutzt werden:

T l ' J =  71 ,
(p)

Pa.ß — Paß s

Ä q*ßr

=  m \ ,

? (i) =  Qi,
nW = N ,

Paß =  P a ß , 

tfaßV =  ’
P<e )  —  F  tcc — ? ( m e / / n i )  ea =  E a ,
,(e) . ÜJc

Der Teilchensorten-Index ist in den letzten Glei­
chungen weggelassen. Das Moment /V-ter Ordnung 
ist durch q^V) abgekürzt. Der obere, eingeklammerte 
Index bezeichnet die Ordnung des Momentes, wäh­
rend a für die N  verschiedenen Indizes ax , a2 , . . . ,  
ak , . . . ,  a/y steht. Diese Indizes sind bei der Sum­
mation über k  als verschieden zu betrachten, auch 
wenn sie zufällig numerisch gleich sind. So ist z. B. 
für N =  S:

3

^ =  (tiau q»ßy +  COß/x q/xay +  Myu quaß .
k= 1

Ist a =  ß  =  y =  1 , so erhält man 3 coi  ̂<7̂ 1 1 .
Das Auftreten von und p£2) in dieser Glei­

chung, in der sonst nur die Momente der Ordnung 
(./V — 1), N  und (N + 1 )  Vorkommen, rührt her von 
der Substitution der Bewegungsgleichung in diese 
Gleichung.

Man erhält ein abzählbar unendliches System von 
Momentengleichungen, welches an die Stelle der 
BoLTZMANN-Gleichung tritt. In der Praxis muß man 
dieses System irgendwie abbrechen. Diese Frage 
wird in Abschnitt 3 diskutiert.

In dieser Arbeit wird im folgenden ein Zwei- 
Komponenten-System mit einfach geladenen Ionen

Substituiert man va und Va in den Bewegungsgleichungen durch da und Ua , so erhält man die Bewegungs­
und die Diffusionsgleichung:

3d" 1 3 (Pâ  +  Pa,u) -  ^ Q a v d v  =  0 ,

Jav =  {^e /mi) 0Jav =  Oav.

An Stelle der Geschwindigkeiten va und Va kann 
man die neuen Geschwindigkeiten da und Ua ein­
führen :

da — V a — Va

(Diffusionsgeschwindigkeit),

Ua =  { m e Va +  m \  Va) /  (/M e +  Tttj)

(Massengeschwindigkeit).

Wenn n =  N,  ist die Diffusionsgeschwindigkeit da 
proportional zum elektrischen Strom j a . Sonst gilt 
bei einfach geladenen Ionen

j a =  e n da+  {N — n) * [Ua +  da m e/ (m[  — me) ] .

3 ^  
dt 
3da 
31

+  UM3^a
3*w
3^a
3«:

me mi
-)------ — du

+ d t, 3 U„

+

Qo
m\ — me 

m0
_  3 pc

Qe 3*

3 * *

7 3 d a m 0 . TT \ 1 mgd^ - / ------- (Ea +  CDav Uv) +  --------
da m\ m\

COav dv

(g(e).^ a 5

3*„
1  d P a

Qi ^ xn Qe d x u /  m\ o e
hierbei ist m0 =  m e +  m ;.

Setzt man in diesen Gleichungen für die Drucke p aß =  p daß und Paß =  P daß und in der Diffusionsglei­
chung die rechte Seite gleich —da/ r s t , wo l / r st die Stoßfrequenz der Elektronen bedeutet, so erhält man die 
von S c h l ü t e r  2 aufgestellten Plasmagleichungen.

2. A llgem eine Form der Stoßmomente

In diesem Abschnitt stellen wir uns die Aufgabe, die allgemeine Form der Stoßmomente für das Zwei- 
Komponenten-Plasma zu finden, wobei wir den von R o s e n b l u t h ,  M cD o n a l d  und J u d d  3 abgeleiteten Aus-

2 A. S c h h l ü t e r , Z. Naturforschg. 5 a, 72 [1950]. 3 M . N. R o s e n b l u t h ,  W. M . M c D o n a l d  u .  D .  L. J u d d ,  Phys. 
R e v .  107, 1 [1957].
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druck für ( d f ^ / d t ) ^  zugrunde legen. Diese Autoren betrachten den Fall eines Plasmas, bei dem inner­
halb des DEBYEschen Abschirmradius viele Teilchen vorhanden sind. Unter der Annahme, daß eine Test­
partikel nur Stöße mit Teildien innerhalb der DEBYE-Kugel erleidet, wobei es jeweils im Mittel nur sehr 
kleine Ablenkungen erfährt, kann man die in der F o k k e r —PLANCK-Gleidumg auftretenden Ausdrücke 
(Aua) und (AuaAuß)  (d .h . die mittlere zeitliche Änderung der Geschwindigkeit und des dyadisdien 
Produktes der Geschwindigkeit der Testpartikel) berechnen und erhält für die Elektronenkomponente

1 idf(3  _ _o 3
T e l dt) ,

3
-  1 +

/ st
me
m\

du«

wobei 

Ferner ist

A « (u )  =  j

/(°) (M(e))

/(r) (u ') du'

/(®) (M(e)) 

3 h(i)(u

3hw (u(e))
3 u'e)fJ.

1
+

+ 3«re) 3u(e>H v
/(e) ( |f (e)) 3“ g(i

3 u'*1 3<> (1)

3ujf 3«<e) /c«) (l*(e))
32 g(i) (u(e>) 
3 3 u jf;

gto (II) =  /  I U -  U I / (r) (tt') du'.

r r =  4 j i  e4 ln A j ( ) 2 =  T J ( m ^ ) 2,

wobei ln ^ l ^  1 angenommen wird. A  =  hj)/p^/2 =  1,24- IO4, ( r e3/Vie) 1/s ist das Verhältnis von DEBYE-Radius 
hj) =  [k r / ( 4  n n  e2) ] 1/j =  6,9* (T /n ) lfi zum Stoßparameter p.ri2 =  e2/ {3 k T) für ( j i / 2 ) -Ablenkung. Numeri­
sche Werte finden sich z. B. bei S p it z e r  4 .

Da dieser Wert für den DEBYE-Radius hj) nur gilt, wenn kein Magnetfeld vorhanden ist, muß man für 
die Gültigkeit der F o k k e r —PLANCK-Gleichung bei Anwesenheit von Magnetfeldern zunächst annehmen, daß 
Ad ^  rgyro , wo rgyro den Gyrations-Radius der Elektronen bedeutet. Man erhält mit rgyr0 =  me vj_ c /(e B ), 
wenn man vj_ =  (2 k Te/m e) i,’~ setzt,

W rgyro =  Bj [c (8  n  ne me) Vl] =  220 B/nelh.

Von P. S c h r a m  (mündl. Mitteilung) ist gezeigt worden, daß die FoKKER-PLANCK-Koeffizienten auch 
noch für /iD^^gyro gelten und daß man für / iD > rgyro statt hd die Größe rgyr0 zum Abschneiden der 
divergenten Integrale verwenden kann.

Da hier nur der Spezialfall eines Zwei-Komponenten-Systems mit Ionen und Elektronen betrachtet 
wird, treten in Gl. (1) nur zwei Verteilungsfunktionen, und auf. (Die Ab­
hängigkeit von Ort und Zeit wird nicht immer explizit angegeben.) Wir führen die Pekuliargeschwin- 
digkeiten W  und W  ein und schreiben ohne Einschränkung der Allgemeinheit

/ (i) (u (i), x, t) =  F (W , x, t ) , / (e) (u (e), x, t) =  f ( w ,  x,  t ) . (2)

Damit folgt für das Stoßglied der Elektronen-Komponente

£ ) . ~ ’
f ( w) 3 h l

3

m u 3 wu

Für die Ionen-Komponente erhält man
1

7Y
3 F
37/) = -  2 

st 3 W 

- ( 1  +

( F ( W
A \

m\ \ 3
me J 3 Wu

3 w 

f(W)

3 H(W)  
3 W„"

+
1 32
2 3 wfl 3 w 

3H (w—d)

f (W) 32 g(™)
(3)

+

3 d„

1

+ 2 3z f(W)
d2 G ( w - d )

3 d„ 3 d„

3 2

F ( W )

2 dWpdJT,  
3h(W+d)'

F ( W )
3 2G(W)

3 3 Wv (4)

In den beiden letzten Gleichungen ist

h(w)  =

g (  *>)

/ (» ') dw',

3 d„

H ( W )  =

3 W.. 3 W„
F ( W )

32 g (W+d)
3d„ 3d„

F( W ) d W ,W-  W I
f \ w - w ' \ f ( w ' )  dw' ,  G ( W )  =  /  I W - W 'l F ( W ')  d XV ,

und entsprechend h { W  +  d ) ,  H ( W  — d ) ,  g ( W + d )  und G(W — d ) .

4 L. S p i t z e r ,  Physics of Fully Ionized Gases, Interscience, New York 1956, S .  7 3 .
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Die Ableitungen nach w u bzw. Wu der Funktionen, die von W — d  bzw. W  +  d  abhängen, sind in die­
sen beiden Gleichungen durch Ableitungen nach d u ersetzt worden. Man kann dies tun, wenn die du 4= 0 
sind. Sind eines oder mehrere der dp =  0, so muß man erst die Ableitungen bilden und darf erst dann 
diese du =  0 setzen. Es bedeutet dies also keine Einschränkung der Allgemeinheit.

Es sollen jetzt die Stoßmomente berechnet werden. Da in den Stoßtermen alle Größen Ableitungen nach 
den Geschwindigkeiten sind, folgt unmittelbar, daß das Stoßmoment nullter Ordnung verschwindet. Beim 
Stoßmoment erster Ordnung muß die Summe aller Terme, welche von Stößen zwischen gleichartigen Teil­
chen herrühren, Null ergeben. Es läßt sich leicht nachprüfen, daß dies der Fall ist. Das Stoßmoment erster 
Ordnung enthält also nur Terme, die die Wechselwirkung mit der anderen Komponente beschreiben. Für 
die Elektronenkomponente erhält man

dir = 1 + me
m\ Wa f ( w)

dH (w—d)
3  d„

d W + W a
32

3 w„  3 w„
f ( w) 32 G (w — d)\

3d„ 3d„ '
du;.

(5)

Man kann voraussetzen, daß f ( w ) für | W  | —> oo mindestens exponentiell verschwindet. Durch partielle 
Integration versdiwindet das zweite Integral in Gl. (5 ). Die Ableitung nach da kann man mit der Integra­
tion über W vertauschen, so daß man für das Stoßmoment erster Ordnung der Elektronenkomponente 
schließlich den Ausdruck

i i
----- 1-----ni[ me ,

3
3 d„

f(w) F (W)
ic W - d dw  d W (6)

erhält. Im Gesamtsystem Elektronen plus Ionen darf sich der mittlere Teilchenimpuls durch Stöße nicht 
ändern. Es muß also die Beziehung

<gg*> = 0

gelten. Das ist auch der Fall, wie man leicht nachprüfen kann.
Das Stoßmoment zweiter Ordnung enthält auch Terme, welche die Wechselwirkung zwischen gleich­

artigen Teilchen beschreiben. Nach ähnlichen Umformungen wie bei der Berechnung von erhält 
man für diesen Anteil (wir zerlegen =© a^’e) +  $ a^a))

(g(e,e) =  A  f  f  / ( ” >)
m e J J I u) —  w ' \

d a ß -  3 (wa ~ wa) (Wß — Wß) dW dw'.

Für die Ionen gilt eine entsprechende Formel. Die Spur @ie,e) dieses Tensors, welche die Änderung der 
mittleren thermischen Energie ^ me( w 2) der Elektronen durch Stöße untereinander beschreibt, verschwin­
det, wie dies auch sein muß. Der Anteil (5ißl) des Stoßmomentes zweiter Ordnung der Elektronen, wel­
cher von den Stößen mit den Ionen herrührt, ist

3 f Wßf(w) H (w -d )  dW+ _3 [ Waf(w) H ( w - d )  dw
la J ddß Jme + 3 d„

f ( w)  G { w - d )  d w .

l
m{

+  32 
me 3 da 3 dß

Ganz analoge Formeln gelten für und ©a/3e) • Die Ausdrücke für die Stoßmomente dritter Ordnung
werden etwas länger; wir wollen sie an dieser Stelle nicht explizit angeben.

Es ist zweckmäßig, für die in den Stoßmomenten auftretenden Integrale folgende Abkürzungen einzu­
führen

(faß... ■ Wa Wß
f(w) f(w') dW dw', = Wa Wß

(w..

und entsprechend für die Ionenkomponente aß...

x& WaWß . . .Wy  Wö

und &aß... • Ferner sei 
f ( w ) F (W )

-WY ) (Ws w d ) j {w' )  du; du;'
W  — W  6

(7)

du; dW (8)
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und y ^ : : A d ) = f f w a W ß . . . W y W i . . . \ w - ' W - d \ f { w ) F ( W ) d w d W .  (9)

Beachtet man, daß
f  f ( w ) H ( w  — d)  d w =  J F ( W )  h ( W + d ) dW  

und f f ( w)  G ( w - d )  d w =  f  F { W )  g { W  +  d)  d W  ist,

so erhält man für die Stoßmomente folgende Formeln:

■2<f> -  -  J Y  (— +  — ) J .  X ( d ) ,  es> =  -©<•>, (10 a), (10b)a 0 \ m e m\] dda

+  -3| ^ - - ( l +  +  2 * - ) | .  (10c)
m e ( ä d a d d ß  \  m i j \ d d a d d ß j  |

+  ( i +  +  ( i o d )
m; [ \  m e / \ d d a d d ß j )

e & - £ { [ 9 . « * - 3 * + 1^ - ( i +  " ; - ) |% ]  + W M ) ]  +  W « , f f l } ,  d o e )

=  ^ { f * . a#r- 3 e f + ^ -  +  ( i +  ^ ) ^ | + [ /K « ,r t ]  +  [ r ( « . Ä ] J .  d o n

[/? (a ,}')] bezeichnet den Ausdruck, den man erhält, wenn man in der ersten eckigen Klammer die Indizes 
permutiert, wobei statt ß, y die Indizes a, y symmetrisch auf treten.

Bildet man die Spuren der beiden Tensoren und <Sa/J, so folgt:

+ und + 2 ( 1 + - ) l r } -  <n >’ (12>m e | o d a d d a \  m \ )  d d a ) m\  ( d d a d d a \  m e ) d d a |

Wendet man den LAPLACE-Operator d 2/ ( d d a d d j )  auf ip(d) an, so erhält man 2 x, wie man mit Hilfe 
der Gl. (9) leicht sieht. Ferner läßt sich die Differenz ( 3 xa/ d d a) — ( dXa/dda ) auf folgende Weise aus- 
drücken:

: - 1 :  -  k  I  ̂ ^ r v r flw) F{W) ^ !{ ■ <13>
Setzt man dies in die Summe der Gin. (11) und (12) ein, so folgt:

=  <*.€?’ (d ) .  (14)

Die linke Seite dieser Gleichung bedeutet die Änderung der thermischen Energie beider Komponenten durch 
Stöße. ®£e) ist die Impulsübertragung von einer Komponente des Plasmas zur anderen. Da d  für n =  N  
proportional zum elektrischen Strom j ,  und für kleine Diffusionsgeschwindigkeiten ( d )  ~ d a wird, 
bedeutet in diesem Fall die rechte Seite die dem Plasma durch OHMSche Verluste zugeführte Wärme. Die 
thermische Gesamtenergie des Systems ändert sich infolge von Stößen also nur dann, wenn Ströme fließen.

Anders ist die Situation jedoch, wenn man nach der Änderung der thermischen Energie nur einer 
Komponente, etwa der Elektronen, fragt. Zunächst kann man in Gl. (11) die Funktion dfia/dda mit Hilfe 
von Gl. (13) eliminieren und erhält

(£«>) _  _  3*
me dd

a_ r  , ^ { j  , 3r  , v 
dda m\ \ 3da 3da (15)

Die eckige Klammer hat die Größenordnung me/m-t gegenüber dem ersten Term in der geschweiften Klam­
mer. Bei (me//n;) • [x + d a{ d x / d d a) +  (3 xaf ö d a) ]  ist das offensichtlich, für 3^a/3</a wird dies an späterer 
Stelle gezeigt (Abschn. 5 ). Wenn d  =  0, so erhält man also eine um m[/mc-ma\ langsamere Energieüber­
tragung von einer Komponente des Plasmas an die andere, als für den Fall d  4= 0 oder im Vergleich zur 
Impulsübertragung. In Fällen, in denen Ströme im Plasma auftreten, wird man die eckige Klammer in 
Gl. (16) vernachlässigen können. Das gilt jedoch nicht für die Ionenkomponente, da bei dieser audi das
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Stromglied von der Ordnung -To/m, ist. Es ist zweckmäßig, alle Stoßmomente 2. Ordnung in eine zu 
Gl. (15) analoge Form zu bringen. Man erhält

=  A  J v  ö' f  _  3 4 * + 3 * *  -  2 i a  X -  d ,  -  «fc - M
m e ( d a a d d ^  defa d d ß  ]

K i  ® - i(S + - Ä ) *0 (3 »
..... . * ä - +  ~ ( - | f -  +  | £ U o | ~ ) | .

m ; l  oda dd0 m e \ d d ^  d d a )  \m[J\

(16)

Es stellt sich nun die Frage, wie man die in den 
Stoßmomenten auftretenden Funktionen cp, 0 ,
X und rp durch d  und die Momente paß , qaßy, usw. 
ausdrücken kann. Da die Verteilungsfunktionen 
f ( W ) und F (W ) quadratisch in den Integralen auf- 
treten und die Geschwindigkeiten auch im Nenner 
stehen, ist es nicht möglich, direkt die Abhängigkeit 
der Stoßmomente von den Momenten anzugeben. 
Eine Möglichkeit jedoch ist der Umweg über die 
Reihenentwicklung der Verteilungsfunktion nach 
ÜERMiTESchen Polynomen. Die Theorie dieser Ent­
wicklung ist für ein Ein-Komponenten-System aus­
führlich von G r a d  diskutiert worden 5.

3. Entwicklung der Verteilungsfunktion  
nach Hermiteschen Polynomen

Die Verteilungsfunktion f { W , X , t ) soll durch fol­
gende Reihe dargestellt werden:

f (W, X, t )  = c  (X, t) exp{ — £ bVfi (X, t) Wv tvn}

■ [a* {X, t) +  av {X, t) Pi1* ( w )  +  aVfl Pg> (10) +  . . . ] .

Die PW  (w)  (IV =  0, 1, 2 , . . . )  sind die über der 
Gewichtsfunktion

f0{ W , X , t ) dW =  c{X, t) •

exp{—^bvfi(x,  t) WvWn} d w

aufgebauten Orthogonalpolynome der Ordnung N. 
bVu und a a*Mx, • • . sind in allen Indizes 
symmetrische Tensoren. Die quadratische Form 
bvu (X, t ) Wv wfl stellt Scharen von ähnlichen Ellip- 
soiden dar. (Diese Verallgemeinerung der kugel­
symmetrischen Gewichtsfunktion ist schon von A. 
S c h l ü t e r  diskutiert worden.) Die Parameter c und 
bvu sollen so bestimmt werden, daß die Gewichts­
funktion f0{ w )  die gleichen Momente der Ordnung 
null, eins und zwei hat, wie die Verteilungsfunktion

5 H. G r a d , Commun. Pure Appl. Math. 2 ,  331 [1949].

f { W)  selbst, also
/  /0 dir =n{ x , t ) ,
f w a f 0 d w  =  0 ,  (1 )  

m  f  W a W ß  f0 d i r  =  Paß .

Wegen der Symmetrie der b tj  kann man die quadra­
tische Form b v u  W v  Wfi immer durch eine Orthogonal­
transformation auf Diagonalform bringen. Es sei

3

W  u =  ^  2T/u W i  
i=]

diese Orthogonaltransformation, deren Koeffizien­
tenmatrix 21,«i (X,  t) von Ort und Zeit abhängt. Da 
Det(2l,«i) =  1 ist, folgt dw = dw  . Damit erhält man 
für die Gewichtsfunktion

f o ( w )  d w  =  c{ X,  t) exp{ — w- 2}  d w  . (2)

Hier sind b ^ ,  522, 532 die drei Diagonalelemente 
des Tensors b v u  nach der Transformation. Es gilt

b a ß  — £  21« 21# b ? = % *  % ß i b ? .  
t=i

(Die Summenzeichen bei Summation über die latei­
nischen Indizes werden wir weglassen. Es ist zu be­
achten, daß der Summationsindex auch öfter ais 
zweimal auftreten kann.)

Aus den Bedingungen Gl. (1) folgt dann

«* .< >  =  (S)

p aß = o(x,  t) 2Li 21 ßi  _ , .
b  i

Multipliziert man die zweite dieser Gleichungen mit 
bx a  und kontrahiert über a, so folgt

bxapaß = £  d a ß  , (4)
b a ß f g  ist also die Reziproke des Tensors paß .

Führt man statt der Geschwindigkeit w  die di­
mensionslose Geschwindigkeit

^  =  ( C i , Co» C 3 }  =  { b i W i , b 2 Ü 2 ,  b 3 w 3 }
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ein, so erhält man aus Gl. (2) für die Gewichtsfunk­
tion

/„ (« ,) d i e - ^ | e x p [ - ? 2/ 2 ] d ? .  (5)

Die zu der Gewichtsfunktion (2 ca) ~5/2 exp [ — £2/2] 
gehörenden Orthogonalfunktionen sind bekanntlich 
die HERMiTEschen Polynome. (Über deren Verallge­
meinerung auf N Dimensionen vgl. G r a d ,  Note on 
Ar-Dimensional H e r m i t e  Polynom ials6.) Die HER­
MiTEschen Polynome bis einschließlich vierter Ord­
nung sind

W 0)(?) = 1 ,

(?) = Ci Cj Cs -  (Ci <5* +  C, 5ik +  C* S„) ,
U i U i  ( ? )  =  Ci C* C; — (C; Cj <S*i +  Ci Cfc ^ ;i +  Ci Ci ' h i  

+  £ j£köu +  Ci öik +  Ca Ci ^i;) 
+  (*5(j *5Äi +  Öji +  d u  d j k )  .

Diese Polynome sind orthogonal zueinander auch 
in bezug auf die Kombination der Indizes bei glei­
cher Ordnung. Für die Reihenentwicklung der Ver­
teilungsfunktion ergibt sich damit

" ^ 4  e x p [ - ? 2/2]
(2jz)3/> J (6)

• [a  +  a ^ T O  + a « } f ( 5  + a ijkK f k&) +  . . . ]  d&

Die a, a*, , .  . .  sind die von Ort und Zeit abhän­
genden FouRiER-Koeffizienten der Verteilungsfunk­
tion f (W,  X, t) . Der Koeffizient der Ordnung TV läßt 
sich durch eine Linearkombination von Momenten 
der Ordnungen N' ^  N  darstellen. Da die Gewichts­
funktion f0 ( W , X , t ) die Gl. (1) erfüllt, sind die 
FouRiER-Koeffizienten der drei niedrigsten Ordnun­
gen, a, ai und a\ j , eindeutig bestimmt. Man findet 
a =  1, öj =  0, dij =  0. Man erhält dann

f ( W , X , t )  d j 2 ~ y f t e x p [ — S 2/ 2 ]

• [1 +  dijk + . . . ]  d ^ .

Wir hatten schon oben gesagt, daß man das unend­
liche System von Momentengleichungen abbrechen 
muß, wenn man konkrete Fälle behandeln will. Die 
konsequenteste Art abzubrechen scheint zu sein, daß 
man in der Orthogonalentwicklung Gl. (6) die Ent­
wicklungskoeffizienten ab irgendeiner Ordnung 

+  1 streicht. Man kann dann das in der ,/V-ten Mo­
mentengleichung vorkommende Moment der Ord­

f ( W ,  X,  t ) d W  =

nung N  +  1 durch die N  ersten Entwicklungskoeffi­
zienten ausdrücken, d. h. durch die N  niedrigsten 
Momente.

Hier sollen die Entwicklungskoeffizienten 4. und 
höherer Ordnung vernachlässigt werden. Eine wei­
tere Vereinfachung erhält man, wenn man

dijk ~  (®i ^jk îk "f" ^ij) (7)

setzt. Man erhält damit die von G r a d  eingeführte 
„13-Momenten-Näherung“ . In dieser Näherung wird 
der Drucktransporttensor durch die drei Komponen­
ten des Wärmestroms ausgedrückt. Im Hauptachsen­
system sind diese proportional zu a-t . Wenn man 
G l. (7) z. B. über j ,  k  kontrahiert, so folgt

aikk =  f  ai •

Dies gilt für beliebige Vertauschungen der Indizes. 
Die ai werden so bestimmt, daß die Näherung Gl. 
(7) bei Kontraktion das gleiche Ergebnis liefert 
wie der volle Drucktransporttensor. Da die Koeffi­
zienten erster Ordnung immer null sind, können 
die in Gl. (7) auftretenden at nicht mit diesen ver­
wechselt werden. Setzt man Gl. (7) in Gl. (6) ein, 
so erhält man als Näherung der Verteilungsfunktion

j ( w , X , l ) =  e x p [ - l ? / 2 ]

• [ l + « i ( * ,« ) C < ( l ? - 5 ) ] d ? .

Für das Moment dritter Ordnung folgt dann

(8)

<Jaßy — >0
bibjbk (2 n)s/t

jC i t i  t*  exp [ -  S2/2] • [1 +  ^  -  5) ] dS

—  (Ja  p ß y  +  q ß  p a y  +  q y  P a ß  , 

wobei qa =  $lai(2 ai/bi),

(9)

(10)

Der Vektor qa hat die Dimension einer Geschwin­
digkeit. Sie gibt an, wie schnell thermische Energie 
durch Diffusion transportiert wird. Durch Kontrak­
tion von qaßy über zwei Indizes erhält man für den 
W ärmestromvektor

sa =  \  qaßß =  f  p qa +  p afi qn . (11)

Hierbei ist 3 p =  pßß die Spur des Drucktensors. In 
der Momentengleichung A'-ter Ordnung tritt auch 
noch das Moment (/V + l)-te r Ordnung auf. Da die 
Verteilungsfunktion hier in dritter Ordnung ap­
proximiert wird, benötigt man in der Momenten­
gleichung dritter Ordnung das Moment vierter Ord­

6 H. G r a d , Commun. Pure Appl. Math. 2, 3 2 5  [ 1 9 4 9 ] .
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nung qaßyö, welches sich durch die Momente zweiter 
Ordnung ausdrücken läßt. Man findet

q lß y ö  = — (p a ß  P'/d +  Par Pß8 +  pßy pad) . ( 12 )

Durch den speziellen Ansatz Gl. (8) ist über alle 
Momente der Verteilungsfunktionen verfügt worden, 
jedoch sind nur 13 Momente linear unabhängig. Es 
gibt offenbar eine ganze Klasse von Funktionen, 
welche die Momente bis einschließlich 4. Ordnung 
mit der Näherungsfunktion Gl. (8) gemeinsam ha­
ben, nämlich alle Funktionen, die sich nur in den 
höheren Momenten von dieser Näherungsfunktion 
unterscheiden. Nach A. S c h l ü t e r  kann man auch Gl.
(12) postulieren und auf diese Weise das System 
der Momentengleichungen abbrechen; es muß dann 
aber das Stoßglied (3 / /3 /) st durch die mitgeführten 
Momente allein (hier also bis 3. Ordnung) ausdrück - 
bar sein. Das ist z. B. möglich bei dem einfachen 
Ansatz ( 3 / / 3 f ) st — ( / m a x w e l l - / ) -  Der Anregung 
S c h l ü t e r s  folgend, wird Gl. (12) auch von K a e p p e - 

l e r  7 benutzt, um das System der Momentenglei­
chungen abzubrechen.

Die Entwicklung der Verteilungsfunktion über 
einer Gewichtsfunktion von elliptischer Symmetrie 
hat den Vorteil, daß eine beliebig große Anisotropie 
im Druck schon durch die Gewichtsfunktion (welche 
die nullte Näherung darstellt) beschreibbar ist. Ein

weiterer Vorteil ist, daß in der „13-Momenten- 
Approximation“ bei elliptischer Gewichtsfunktion 
nur der eine Koeffizient at auftritt, um Abweichun­
gen von der nullten Näherung zu beschreiben. Erst 
wenn Wärmeströme auftreten, wird a* 4= 0. Ein 
Nachteil sind die mathematischen Komplikationen, 
die auftreten können, insbesondere dann, wenn die 
Lage der Hauptachsenrichtungen des Drudetensors 
nicht unmittelbar ersichtlich ist, so daß man die 
Hauptachsentransformation durchführen muß, oder 
wenn sich deren Lage für Ionen und Elektronen 
unterscheidet. Jedenfalls ist die Berechnung der 
Stoßmomente in diesem Fall schwieriger als bei Ent­
wicklung über einer kugelsymmetrischen Gewichts­
funktion.

Für die Ionenverteilung erhält man

F ( W ,  x ,  t) dW  =
(13)

wobei =  Bi Wx , usw. Bf W f  ist die quadratische 
Form BuV W^ Wv im Hauptachsensystem, 58^ sei die 
Transformationsmatrix für die Ionen. In vielen Fäl­
len wird 2t,ui =  23,ui sein, insbesondere wenn die An­
isotropie im Druck durch elektro-magnetische Fel­
der hervorgerufen wird, die ja  in gleicher Weise 
auf Ionen und Elektronen wirken.

Setzt
Sol/i  vT 9 a ßßn ( I p  P au +  Paß pß / i )  /iQe 5

so erhält man für die Momentengleichung dritter Ordnung in kontrahierter Form, d. h. also für dieWärme- 
stromgleichung:

3s„ 3s„ 3s*„ dv.. dv„ 3 p 3 pa3s 3s* 3« dv .
_ + V f i  ------- ----------------1- -----Ä a - f  ^ ------  Sju +  COf iaSf i -
d t  d x ^  d Xfl d x^  3 z M 2  Qe d x ^ (14)

9e

Xa6) ist definiert durch

S (e) =  i /^ , ,>  ,  P— 3 —  @<e) - 2
Qe 9e (15)

=  —  !? > « -3 # g '* + £ 3 ,,3 „ y a + 3 a 3 „ V V ,- ( l  +  — ) i  da Xw  +  d u X w -  ~  3« * -  —  3* X | |-
m e l \  m i /  L ^  2  £>e f?e |J

Es bedeutet hier 3 a = 3/3c?a. Bei der Ableitung dieser Gleichung ist die aus Gl. (2.7) folgende Beziehung 
=<pa benutzt worden. Eine entsprechende Gleichung gilt für die Ionen:

2 £ ) =  —  { $ « - 3 0 2 '4+ £ 3 #,3 , ,y a +  3 « 3 /, y ' ‘ +  ( l  +  — ) i - +  4 - — 3 “ ^ - — | | -
mi l \  me J Z 2 Pi JI

(15 a)
7 H. J. K a e p p e l e r , Z. Naturforschg. 14 a, 1056 [1959].
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4. Berechnung der H ilfsfunktionen cp und #  (bzw. und 0 )

In diesem Abschnitt sollen die durch Gl. (2.7) definierten Hilfsfunktionen beredinet, d. h. explizit durch 
die Momente ausgedrückt werden. In der 13-Momenten-Näherung treten die Funktionen cp, <pa , und 
^ “^auf. Die entsprechenden Funktionen für die Ionen ergeben sich sofort, wenn man die Momente der 
Elektronenkomponente durch die der Ionenkomponente ersetzt. Es sollen zunächst cp und cpa berechnet 
werden. Man kann cpa in symmetrischer Form darstellen, indem man im Integral statt w a den Ausdrude 
(wa +  w a ) /2 einsetzt. Transformiert man dann noch in das Hauptachsensystem, so folgt

® = 8 r - . J L  1 f f  ( C i + M H O f W d C d C ' W ______  m
bi 2 J J  [ (Ci - CiO 2/5 2 + (̂ 2— •/ 522 + (C3 - 2/5 32]1/1 '

Es liegt nahe, die Substitution Ci — Ci =  £» V2  und Ci +  Ci =  Vi durchzuführen. Für das Volumelement 
erhält man dann d £ d £ ’ =  d£dY). Das Integrationsgebiet ist wieder der ganze R aum .^2+ £ /2 geht über 
in +  r j2. Damit erhält man

•1 + a i ^ ( « + f f _ 5 '
V2

dl* d r)/(? )  / ( £ ')  d £ d £ ' =  ^ j T e x p l  -  \  (£2 +  Y]2)}-

Vernachlässigt man Glieder, die quadratisch in dj sind (diese Annahme darf man machen, da die „Wärme- 
stromapproximation“ nur dann gilt, wenn für die Norm des Vektors aL gilt ||a|J 1), so folgt für das 
Produkt der eckigen Klammern

Ä(5,»l)=l + (ai/l/2)[«,i(in2- 5 ) + );i(?-5)+2fi(?-Y))] .

Es ergibt sich also aus Gl. (1)

_ 4  % .  _ j _  r r d? d,>' <2>j/2  hi (2 jr) 3 J J \ ß i £ i *+ ß tE t+ ß* E * * \ h

wobei ß i  =  2/B12 usw. Offenbar erhält man cp, indem man auf der rechten Seite von Gl. (2) statt rji und 
%d/V2 bi jeweils 1 einsetzt. Die Integration über TT) läßt sich unter Berücksichtigung der Orthogonalitäts­
relationen leicht ausführen und man erhält

n2 f  exp [ — £ 2/2 ]d

<P~  [ ß t t f + ß t H + ß t S ? ] *
j  n2 m  w  1 f  [H2- 5  +  2 & 2] e x p [ - £ 2/2]dE

2 b i ’ (2 *>•/■] I ß i t f + ß i K + ß i t f V ' '  *

Der Typ der hier auftretenden Integrale über \  ist in der Literatur bekannt8. Man kann die 3-fache In­
tegration über den 2;-Raum auf eine einfache Integration über einen Parameter s zurückführen. Man er­
hält für m1 +  m2 +  /n3> 2 r  und m j , r > 0:

I
r ( m j 2) r (m j2) T (mj2) 2fCTt+Wf+Wl)/2- r +l f  (1- , 2) (m1+mi+m,)/2- r - l  ds

ß r T ( r )  J (1 + T l s ) ”' J* ( l  +  Tt s ) ”hß  { l + t 3 s ) ”h/2

mit ß  =  (ß1+  ß 2 + ß s ) ß  und T i = ( ß i / ß ) — 1. Die Größen C und Caß sind erklärt durch
Es folgt damit schließlich 1

o _2 r  _  1 f  ds
< P ~ i A g C  (3) W J

\ n ß  0
und i ,

2 n2 r 2 l C 1  r  1 C a ß =  2lai 2l/?i — j — ----------------- ,cpa =  —r= x  [ — i C  q a +  $  Cau qfi] . (4 )  j/2 J l  +  r* s2 D(r,  s)
y j i  p  0

8 I. M. R y s k ik  u .  I. S. G r a d s t e in , -Z-ZZ-Z-Tafeln, VEB Deutscher Verlag der Wissenschaften, Berlin 1957, S. 220.
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D =  j / ( l  +TJ52) (1 + r 2S2) (1 + T 3 S2) •

In den Stoßmomenten treten weiterhin die Funktio­
nen $ aP und auf. Es ist

/Q,aß = f f f f ' d  Ü d w '
bi bi J J \w — w'\

-  2 S)r 9r ft 1 f  £ 8expl - r / 2 ] dg-71 Pi • (2jr)./t J £*+/?, & + ß s ^ ]V .

=  4 4 [ ^ c - c „ , ] . (5 )
yj i  p

In dem zweiten Ausdrude ist die Integration über r] 
durchgeführt; ferner ist berücksichtigt, daß im 
Zähler bei der Integration ein <5-Symbol ergibt. Der 
letzte Ausdrude ergibt sich nach der Integration 
über £. Schließlidi erhält man nach ähnlichen Um­

formungen

C q . +  i C v q „ ] .  (6)
y j i ß

5. Die Berechnung der Hilfsfunktionen % und xp

In diesem Abschnitt werden die Hilfsfunktionen 
berechnet, die in den Stoßmomenten bis einschließ­
lich dritter Ordnung Vorkommen. Zunächst ist

* - [ f  | ' _ r ” | d w i w ■ (1)

Setzt man Gl. (3.8) und Gl. (3.13) ein, so erhält 
man, unter Berücksichtigung der Identität

W»«Pl -  5V2] = -  3|  3|  - 4  exp[ -  ?*/2] ,

n N  r n i - a d d / d ^ A t ; ]  exp[— £ 2/2] ■ [ l - A t Q ß Z d  A Z] e x p [ - Z 2/2] ^  ^
1 ~  (2ji)3 JJ  | _  W — d  |

Durch partielle Integration lassen sich die Ableitungen nach Ci und in solche nach d t verwandeln und 
vor das Integral ziehen. Insbesondere gilt

f  (3 /3£ i) e x p [ - £ 2/2] ai 3 r  e x p t - ^ / 2
IJ I IV -  W -  d \  ** 1 B i  3 da J I t v - w -

- C 2/2] d 
d l

und
' " I

(3 /3 Zj) exp [— Z 2/2]
it; — BF— <Z |

Mit Hilfe der Relationen Gl. (3.3) und Gl. (3.10) folgt dann

e x p [ - Z 2/2] d Z  
I tv -  W -  d  I

PvX 3v 3i 1 +  i  Qx 3«  —  3<t3 t
f?i I I

exp[ — ( £ 2 +  Z 2)/2 ] d £ d Z  
I t c  — W— d  I

(2 a) 

(2 b)

(3)

Die qu sind von der Größenordnung

q,»~ (p/oe) 1/!i  a | | ,

während man für Q  ̂erhält

C,~(P/a)’/!-M IIs
|| a || und | J  A || seien die Normen der Vektoren a* 
und . Unter der Annahme, daß || a || ~  || A || und 
P ~ p ,  ist der Term mit Q^ von der Ordnung 
(/ne/m i)s/2 gegen den Term mit qfl. Man darf also 
unter noch weit schwächeren Voraussetzungen über 
die Größenordnungen von p, P, || a jj und || A || den 
Term mit Qu streichen.

Es bleibt jetzt noch das Integral in Gl. (3) zu be­
rechnen. Zunächst soll gezeigt werden, daß man in 
der Näherung, in der man me/nii gegen 1 vernach­
lässigen kann, die Ionenverteilungsfunktion als <5- 
Funktion betrachten darf. Es sei für diesen Zweck 
angenommen, daß beide Verteilungen kugelsymme­
trisch sind (das Ergebnis dieser Betrachtung gilt

aber auch für Funktionen von ellipsoidischer Sym­
metrie) . Dann kann man für den Exponenten der 
Exponentialfunktion schreiben

£2+  Z 2=  b2 w 2 +  B2 W 2.

Führt man wi 
erhält man

Wi =  £i als neue Variable ein, so

b 2 w 2 +  B2 W 2 =  b2%2 +  2 b2\  W +  (b 2 +  B2) W 2.

Hier ist offenbar b2/B2 von der Ordnung me/m i ,  
so daß man b2 in der Klammer vernachlässigen darf. 
Eine weitere Umformung ergibt für diesen Ausdruck

b2 %2 +  B2[ w  +  (b2/B2) %]2 -  ( b 2/B2) b2\ 2.

Der letzte Term ist wieder von der Ordnung m e/m\  
gegen den ersten, während die eckige Klammer für 
jedes feste % lediglich eine Verschiebung des Maxi­
mums der GAüss-Funktion e x p [— ̂ B 2W 2] ergibt. 
Die Integration über W  liefert also ( 2 n ) 3,t. Setzt 
man statt welches ja  Integrationsvariable ist, wie-
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der W  ein, so erhält man für das Integral in Gl. (3) yj* ( d )  =  " N f | W  -  d  | exp[ - £ 2/2 ] d £  
„ nr r --- r >-2Mi jy  (2 tt) - J

(5 )
e x p [ -  £ 2/2] d£

(4) Diese Integrale hängen offenbar mit den Lösungen 
der Potential- bzw. Bipotentialgleichung mit der 

Für die Funktion xp erhält man einen ganz ähnlichen Dichtefunktion exp [ — ^ wj, ] zusammen. Man 
Ausdruck wie Gl. (3) und an Stelle von Gl. (4) das kann diese Lösungen durch ein den elliptischen In- 
Integral tegralen verwandtes Integral ausdrücken und erhält 
------------------------------------------------------------------------- für die Funktionen y* (d ) und xp*(d)

X *(d )  =
2 n N ds
j/ n ß  J D{r,s) 

o
exp c2 ‘ di2 A 2 .

1 + t, s2 l  +  r , s 2 l + r 3 s2 (6)

und y * ( d )
2 n N  C ds

ß  J D{ r, s)
exp

Es ist zu beachten, daß die Funktionen y* und xp* 
explizit von d ,  also den Komponenten der Diffu­
sionsgeschwindigkeit im Hauptachsensystem des 
Elektronen-Drucktensors, abhängen und nicht von 
d .  Wenn das Hauptachsensystem mit dem gewähl­
ten Koordinatensystem nicht zusammenfällt, muß 
man die Ableitungen nach dp mit Hilfe der Trans­
formation berechnen.

Wir wollen die Ausdrücke (ppv/Qe) d p d v y* und 
(pur/ge) d p d v xp* noch vereinfachen. Aus Gl. (2 a) 
folgt

PßV 9  3  y* —

n N

n N  f  A ( e x p [ - £ 2/2]

(2 n)

(g « -3 )  exp[— g»/2]
I w  — d  I

Man kann nun £ 2 exp[ — ^2/2] durch —2 (3 /31 )
• exp [ — £2 X/2] darstellen, wenn man nach der Dif­
ferentiation den Grenzübergang X —> \  macht. Ver­
tauscht man dann noch die Integration über £ mit 
dem Grenzübergang und der Ableitung, so folgt

d p d v y* =  - X * ~ d n  d u y*

und P—  3,« 3r Xp* =  W* -  dp dp xp*
Qe

Man erhält damit aus Gl. (3)

Y ~  [1 +  3|* +  \  dv 3v qp 3^] y 

und für die entsprechende Formel für xp 

V  =  [1  +  k d v 3v qp 3u] xp*.

(8)

(9)

Um y a zu erhalten, muß man in Gl. (1) den Inte- 
granden mit w a multiplizieren. Da man wieder 
F ( W )  als (3-Funktion auffassen kann, folgt mit der

di2 dz2 (?32
1 + T jS 2 1 + T ,S 2 l + T j S 2

- 1 (7)

Substitution wa =  d a — (da — wa)

y a =  da y -  d a xp.

Bei der Berechnung von xpa kann man auf ähnliche 
Weise vorgehen. Mit Hilfe einer Hilfsfunktion

xp =  J  \ W  - d \ s f ( w )  d w  ,

welche die Relation dpdpxp  =  12xp erfüllt, folgt
Xpa =  da \p — 3 3a $  .

Eine explizite Berechnung der Hilfsfunktion xp ist 
nicht nötig, da xpa nur unter dem Differentiationszei­
chen vorkommt, so daß sich xp wieder auf xp redu­
ziert. Für yaß ergibt sich nach ähnlichen Umformun­
gen
Xaß =  d ad ß y  — da dß x p —d ß d axp — daßxp +  ^d adßxp .

Für die in auf tretenden Terme erhält man 
damit:
3.« dpxpa =  2 (da y - d a x p ) ,
3a dp Xpp — dp 3 p daXp ,

3a Xpp = 2  da y +  dp du 3a y -  da xp — 2 dp dp 3a xp, 
3/* yap =  2 day +  d a d p d p  y  -  dp dp 3 a xp -  3 a xp .

Es bleiben noch die in & (äß und auftretenden 
Funktionen ipa, y? und y a/?, deren Berechnung etwas 
schwieriger ist als die der anderen Funktionen, da 
die Funktion / ’(W ) hier nicht ohne weiteres als 
^-Funktion betrachtet werden kann. Z. B. wäre dann 
y 2 = 0 +  0 ( m e/rrii). y 2 erscheint aber im Stoß­
moment 2. Ordnung multipliziert mit m;/me , so daß 
es gerade auf das Glied der Ordnung me/nii an­
kommt. Das gleiche trifft für y lß im Stoßmoment
3. Ordnung zu. Nur xp2 kann vernachlässigt werden. 
Nach einigen Rechnungen folgt

Y* — (PapfQi) d p y +  h Qa(Ppv/‘Qi) d p d v y  
+  (Pa.u/Qi) Qv 3 v 3/< Y*.
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Im ersten Term kann man statt des Integrals lässigt werden. Ähnliche Umformungen ergeben
Gl. (1) die Funktion % in abgekürzter Form, d .h . 
mit Vernachlässigung der Ionentemperatur, so wie 
sie in Gl. (8) angegeben ist, einsetzen. In den bei­
den anderen Termen haben wir %* eingesetzt, da 
Glieder, die quadratisch in Q^ und sind, vernach-

t ß =  ( P a ß l e i)  X  +  Q a  ( P ß M  ^ ^ X *  

+  Q ß  { P o-!*IQ'\) 3/i / *  +  ^  {Paß/,Qi) Q u  3/1 X * .

Audi hier sind Glieder der Ordnung me//n; und 
Qa qß weggelassen.

Setzt man die Ausdrücke für %a , xpa usw. in die Gl. (2 .10), Gl. (2.17) und Gl. (3.15) ein, so daß nur 
noch x und tp auftreten, so erhält man für die Stoßmomente der Elektronenkomponente

me

@(a/J =  —  {<P daß ~  3 +  3 3a 3/? V  - 2 Ö aß X ~  (da 3ß +  dß 3 a) x)  >TUq

£(e) =  [ y a _  3 +  1  3 a y  +  3  d[l 3^ 3 a^  _  2 d a X -  3a X -  da dp 3* X +  —  3a X +  —  3« X *1
\ 2 2 Qe Qe )

Die entsprechenden Formeln für die Ionen lauten

me

r,
®2> =  ^ 3 . Z ,

m e

&aß =  —  \&daß  — 3 S aß +  3a dfi <p +  —  (Papi 3„ dß +  Pßp 3 p 3a) X
m  [ Qe

+  —---  (Qa dß +  Qß 3a) Puv 3/4 3r X* H------ { P 3 ß +  Pß/x 3a) Qv 3v 3/< X* ! )
^ £>e Qe )

SS> =  ^  -  3 e r  +  —  (?„ J>„, 3 . 3 .  X* +  Q“ 3« z*
m i { Qe 4 £>e

+  —  P̂ V dfi 3v X* +  03 - Pafi Qr 3/4 3v X* ) •
Qe  ̂&e I

Die Funktionen £*, yj*, x und y  sind definiert durch 
die Gin. (6) — (9) und die Funktionen <p, cpa , 
und 'd'^ durch die Gin. (4.3) — (4 .6).

Wir wollen hier noch einmal zusammenfassen, 
welche Annahmen in diese Formeln für die Stoß­
momente eingehen. Die Grundannahme ist, daß die 
F o k k e r —PLANCK-Gleidiung (2.1) gilt, was voraus­
setzt, daß genügend viele Teilchen innerhalb der 
DEBYE-Kugel sind. Ferner darf das Magnetfeld nicht 
zu stark sein.

Die Entwicklung der Verteilungsfunktion nach 
ÜERM iTEsdien Polynomen gilt für beliebige Relativ­
geschwindigkeiten zwischen Elektronen und Ionen 
und für beliebige Anisotropien des Drudetensors. 
Die einzige Annahme über die Konvergenz dieser 
Entwicklung ist, daß die Koeffizienten 3. Ordnung,

welche die Wärmeströme beschreiben, klein sind, 
d .h . | 5a | ^  f  p Vp/Qe • Diese Annahme wird im 
allgemeinen zutreffen. In den Gleichungen für die 
Elektronen sind die Ionen als ruhend angenommen, 
d. h. Terme von der Ordnung m j m i sind gegen 1 
vernachlässigt. Diese Vernachlässigung ist jedoch 
nicht statthaft für die Ionenstoßmomente. Man kann 
aber in vielen Fällen für die Ionen eine M a x w e l l - 

Verteilung annehmen, wobei die Temperatur durch 
die Energieübertragung Elektronen — Ionen be­
stimmt wird.

Herrn Professor A. S chlüter möchte ich an dieser 
Stelle für die Anregung zu dieser und den beiden fol­
genden Arbeiten und für viele wertvolle Diskussionen 
meinen Dank aussprechen.


