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For the Foxkker-Pranck-equation for a plasma the system of moment equations is derived. The
highest order moments considered are the components of the heat flux. For these the condition must

be satisfied that they are small compared with (5/2) p}/p/0oe . All moments of lower order, especially
the difference velocity of electrons and ions (i.e. the electrical current) and the anisotropy of

pressure are arbitrary in this approximation.

Das Ziel dieser Arbeit ist, aus der Borrzmann-
Gleichung fiir ein Zwei-Komponenten-Plasma das
zugehorige System der Momentengleichungen her-
zuleiten, und zwar unter Verwendung der Foxker—
Praxck-Naherung fir das StoBintegral. Diese Na-
herung ist giiltig unter der Voraussetzung, daf} sich
innerhalb einer DeBvE-Kugel sehr viele Teilchen be-
finden, was in praktisch interessierenden Fallen mei-
stens zutrifft.

Die Theorie der Momentengleichungen ist zuerst
von Grap behandelt worden, jedoch ohne Einbezie-
hung geladener Teilchen. KoLopnEr hat fiir den Fall
kleiner Abweichungen vom thermischen Gleichgewicht
die Theorie der Momentengleichungen auf ein Plasma
angewandt (Lineare Néherung fiir das StoSlintegral).

In der vorliegenden Arbeit werden die Momenten-
gleichungen fiir das Plasma abgeleitet, wobei die
Diffusionsgeschwindigkeit (d. h. die Differenz der
mittleren Geschwindigkeiten der einzelnen Kompo-
nenten) und die Druckanisotropie beliebig sein sol-
len. Letztere Verallgemeinerung bedingt eine Ent-
wicklung der Geschwindigkeitsverteilung f(w) nach
Orthogonalpolynomen iiber einer Gewichtsfunktion
vom Typ

g(w) =exp[ —a; w® —ay wy? —agwy?] ,

wobel a;, a,, ag positive, voneinander unabhéngige
Konstanten sind (Abschnitt 3). Die StoBintegrale
lassen sich dann durch die Losungen der Potential-
gleichungen

dp(w) = —47ag(w) und 44y (w) = —8x g(w)

ausdriicken. Diese Losungen kann man auf Einfach-
Integrale zuriickfithren.

Es wird hier die von Grap diskutierte 13-Mo-
menten-Naherung benutzt, in welcher jede Gas-
komponente beschrieben wird durch partielle Dif-

ferentialgleichungen in Ort und Zeit fir die
Dichte o, die mittlere Geschwindigkeit der Kompo-
nente ¥ ={v;,vy,v3}, den Drucktensor pss und
den Wirmestrom s.. Eine wesentliche Einschrén-
kung ist dabei die Voraussetzung, daf} die auf-
tretenden Warmestrome sq klein sind, d. h.

|sa| < 3pVplee.

Wenn die Differenz der mittleren Geschwindigkeiten
der einzelnen Komponenten beliebig sein soll, darf
man nicht die tbliche Definition der thermischen
Energie einer Komponente (bezogen auf die Massen-
geschwindigkeit des Gesamtsystems) benutzen, son-
dern muf} die mittlere Geschwindigkeit dieser Kom-
ponente als Referenzgeschwindigkeit nehmen.

1. Die Momentengleichungen

In diesem Abschnitt soll die Herleitung der Mo-
mentengleichungen kurz skizziert werden 1.

Die Borrzmans-Gleichung fiir ein aus geladenen
Teilchen der Sorten r bestehendes Gas lautet (mit
Benutzung der Summationskonvention) :

3O o310
ot # Qs (1)
of® Qf(x)
(r) (r) e 9] =

~+ [eur (x: t) + (,0,};, (x: t) uvr ] 'au;:) - (731:7)5‘: .
Es bedeuten hier: ¢ die Zeit, X den Ortsvektor mit
den Komponenten z., u!{’ die Geschwindigkeits-
komponenten eines Teilchens der Sorte r im Labor-
system,

e (%, 1) = (e®/m®) Eu(x, 1)
die durch ein elektrisches Feld E (x,¢) auf ein Teil-

1 Vgl. z. B. S. Cuapmax u. T. G. Cowring, Mathematical Theory
of Non-Uniform Gases, Cambridge University Press, Cam-
bridge 1953, S. 322 f.
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chen der Sorte r mit der Masse m” und der La-
dung e ausgeiibte Beschleunigung und

of) (x,t) =e® By, (x,2) /m® ¢

die Gyrofrequenz fiir die Teilchensorte r. ¢ und

o) konnen, wie angedeutet, von Ort und Zeit ab-
héingen. fO(u®,x,¢) ist die Verteilungsfunktion
der Teilchensorte r. Der Term auf der rechten Seite
von Gl (1), (3f™/3t), beschreibt die zeitliche
Anderung der Verteilungsfunktion durch StoBe.
E.(x,t) und B. (X, t) enthalten auller den dufleren
Feldern auch noch ,,innere“, welche durch Ladungs-
trennung und elektrische Strome innerhalb des Gases
hervorgerufen werden. Die Frage der Berechnung
dieser inneren Felder soll in dieser Arbeit nicht an-
geschnitten werden. Es seien also E.(X,¢) und
B.,(x,t) die am Ort X zur Zeit ¢t herrschenden Fel-
der, wie auch immer sie zustande gekommen sein
mogen.

Man definiert die
O (u, x,t) wie folgt

n®(x,t) = j I(l‘) (u®,x,t) du®

n@® ,U(r)(x, t) = / u&r)f(") (u®,x,t) du®, (2)
p&’é (x,8) = m® [ 0 wi fO (u®,x, 1) du®,
qa,g,, (x,2) = m® [w§ wg)wf,')f(') (u®, x,t) du®,

‘];122 P (r) fw(r) gz)"' w&’N’f(’) (u(r),x’ t) du(r),

wobei w®P =ul —oP(x,1).

Momente der Funktion

Diese Momente haben folgende physikalische Bedeu-
tung: n((x,¢) ist die Teilchendichte der Gaskom-
ponente r im Ortsraum und v{” (X, ¢) ist die mittlere
Geschwindigkeit der Teilchensorte r. w{” nennen wir
Pekuliargeschwindigkeit. Das Moment zweiter Ord-
nung pf,rﬂ’ 1st der Drucktensor, das Moment dritter
Ordnung ¢, der Drucktransporttensor der Teil-
chensorte r. Kontrahiert man den Drucktransport-
tensor, so erhdlt man die Vektorkomponenten des
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mente lassen sich keine anschaulichen Interpretatio-
nen angeben. Die Momente sind offenbar (in allen
Indizes) symmetrische Tensoren.

Die Momentengleichungen erhélt man nun, indem
man Gl. (1) mit den Funktionen

1, 2P, m® w® w;;r) -

multipliziert und uber den Geschwindigkeitsraum in-
tegriert. Setzt man iiber die Funktion f® (u®®,x, ?)
voraus, daf} die Integration iiber den Geschwindig-
keitsraum vertauschbar ist mit den Differentiationen
nach Ort und Zeit und daf} f(u) hinreichend schnell
verschwindet fiir |#|— oo , so folgt durch Integra-
tion von Gl. (1) die Kontinuitéitsgleichung
dn(r) 3 (,.)
o T, B0U0) =
Das Integral iiber den Stoflterm verschwindet, wenn
bei StoBlen die Teilchenzahl erhalten bleibt. Dies soll
vorausgesetzt werden, d. h. Tonisationsprozesse u. &.
werden nicht betrachtet.
Multipliziert man Gl. (1) mit »{” und integriert
dann, so erhélt man die Bewegungsgleichung
(r) n 1 Opg;l F.&r)

ot 8:1, ' &r) Ox‘u

1 f(M)\
= O du®
n(r)j‘ e ( ot )st

Das Integral iiber den Stofiterm liefert hier einen
Beitrag, namlich den Impulsaustausch der Kompo-
nente r mit den anderen Komponenten. Der Anteil,
der von den St6Ben mit gleichartigen Teilchen her-
rithrt, muBl natiirlich verschwinden. Auch bei den
Momenten hoherer Ordnung verschwinden die In-
tegrale iiber (3f/Ct)g nicht. Es soll deshalb das

»Stolmoment® definiert werden durch die Gleichung

Qv g
= +oiD. — o) oD

3f(x) \
Sl (%, 8) =m® [ 00w é, | du®

Wirmestroms s&=4%¢),. Fir die hoheren Mo- (3)
Damit ergibt sich dann fiir die Momentengleichung zweiter und dritter Ordnung:
apaﬂ apaﬂ o aqaﬂu | avu v, .
t + # al‘u ” 817,4 N a;; puﬂ-'_ aIu- pﬁ# B w“# P#ﬂ ‘ + [ﬂ, a] h @“ﬂ (4)
S4ap J aqaﬁ:’ chﬂ/ﬂ
= 3 ™8, T a, T a oo (5)
ava g Opau
+ |5, qubr— Do quir + - Sappr = +Br )] +7(a,f)] =Cas .
z, 0 o 0Oz,

Gapyu ist das Moment vierter Ordnung und o

=mn(xt). [f,a] bzw. [B(a,7)] bezeichnet den Ausdruck,

der aus der ersten eckigen Klammer durch Permutation der Indizes entsteht; a und y treten in [£(a,7)]

symmetrisch auf.
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Fiir die allgemeine Momentengleichung N-ter Ordnung erhilt man

aq(N) aq(m 3] (:Hn av .
B Tua + N)
ot oz, 3z, az
.V‘ r Sv p(N—x) B ap(i) N
+ \ l = —a)O'kll) 'qul...ak—lﬂk+l 1Al‘+ L aN b(l) = =@;A )-
k=11 91:“ j 0 azu

Der Teilchensorten-Index ist in den letzten Glei-
chungen weggelassen. Das Moment N-ter Ordnung
ist durch ¢{™) abgekiirzt. Der obere, eingeklammerte
Index bezeichnet die Ordnung des Momentes, wih-
rend a fiir die NV verschiedenen Indizes a,, a,...,
% ,..., ay steht. Diese Indizes sind bei der Sum-
mation tiber & als verschieden zu betrachten, auch
wenn sie zufallig numerisch gleich sind. So ist z. B.

fir N=3:

3
kzlwak,u QE?Z) =Wau Gupy + Wu Quay + WDyu Quap -

Ista=pf=y=1, so erhilt man 3 wlu quit .

Das Auftreten von ©{ und p{? in dieser Glei-
chung, in' der sonst nur die Momente der Ordnung
(N—1), N und (N +1) vorkommen, riihrt her von
der Substitution der Bewegungsgleichung in diese
Gleichung.

Man erhilt ein abzdhlbar unendliches System von
Momentengleichungen, welches an die Stelle der
Bovrrzmann-Gleichung tritt. In der Praxis muB man
dieses System irgendwie abbrechen. Diese Frage
wird in Abschnitt 3 diskutiert.

In dieser Arbeit wird im folgenden ein Zwei-
Komponenten-System mit einfach geladenen Ionen

und Elektronen untersucht werden. Um die Teilchen-
sorten-Indizes i und e nach Moglichkeit zu eliminie-
ren, sollen folgende Abkiirzungen benutzt werden:

m® =m,, m) =m;,
e© =g, o® ~gi,
n® — ni =N,
p‘eﬂ’ = pas P =Pas,
43, = qutr» @hy = Qasy s
2 = ity & = (me/m;) ea=Ea,
o) = — War, o) = (me/m;) Way=Qay .

An Stelle der Geschwindigkeiten v« und V. kann
man die neuen Geschwindigkeiten d. und U. ein-
fiihren:
da=Va— Va
(Diffusionsgeschwindigkeit) ,

Us= (meva+m; Va) [ (me+ m;)
(Massengeschwindigkeit) .

Wenn n=0N, ist die Diffusionsgeschwindigkeit da
proportional zum elektrischen Strom j.. Sonst gilt
bei einfach geladenen Ionen

ja=enda+ (N—n) [Us+dame/(m;—me)] .

Substituiert man v. und V. in den Bewegungsgleichungen durch da und U., so erhélt man die Bewegungs-

und die Diffusionsgleichung:

U, U, me mj 1 Q
RIS, .. — u = a, au) — —— ay dﬂ—‘O
3 + U 5, - d “+Oo a - (pou+ Pay)
3d = 8(1 aU m, mi—me
% w — e~ — s i a ay Uv Day dV
A +U 5, +d 5, = © dyu adu = (¢a+ war Uy) + —
+(’ 1 SPa,, 1 Op,, ‘) —_ ™ g,
0i 3z, Oe Oz, | mige =’

hierbei ist mg = m, + m; .

Setzt man in diesen Gleichungen fiir die Drucke pag=p dop und Pas=P dap und in der Diffusionsglei-
chung die rechte Seite gleich — da/7y; , wo 1/74; die StoBfrequenz der Elektronen bedeutet, so erhilt man die

von ScHLUTER 2 aufgestellten Plasmagleichungen.

2. Allgemeine Form der StoBmomente

In diesem Abschnitt stellen wir uns die Aufgabe,
Komponenten-Plasma zu finden, wobei wir den von

2 A. ScuuLUTER, Z. Naturforschg. 5 a, 72 [1950].

die allgemeine Form der StoBmomente fiir das Zwei-
RosexsLuta, McDonatp und Jupp 3 abgeleiteten Aus-

3 M. N. RosexsLute, W. M. McDo~arp u. D. L. Jupp, Phys.
Rev. 107, 1 [1957].
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druck fiir (3f/3t)4 zugrunde legen. Diese Autoren betrachten den Fall eines Plasmas, bei dem inner-
halb des Desveschen Abschirmradius viele Teilchen vorhanden sind. Unter der Annahme, daf} eine Test-
partikel nur St6Be mit Teilchen innerhalb der Desve-Kugel erleidet, wobei es jeweils im Mittel nur sehr
kleine Ablenkungen erfihrt, kann man die in der Fokker—Pranck-Gleichung auftretenden Ausdriicke
(Aus) und (AuaAusg) (d.h. die mittlere zeitliche Anderung der Geschwindigkeit und des dyadischen
Produktes der Geschwindigkeit der Testpartikel) berechnen und erhilt fir die Elektronenkomponente

HEL -t Gl B e 22
e ) e 5 2]

wohel o ) = (! T)u(“ ’;"‘l . g = [|u—u O @) du.

Ferner ist I''=4aetln4/(m®)2=T,/(m®)2,

wobei In 4 > 1 angenommen wird. A = hp/pas=1,24-10*: (T.3/n.) " ist das Verhiltnis von Depye-Radius
hp=[kT/(47ane*)]”=6,9(T/n)"* zum StoBparameter p.»—e2/(3kT) fiir (7/2)-Ablenkung. Numeri-
sche Werte finden sich z. B. bei Serrzer *.

Da dieser Wert fiir den Desve-Radius hp nur gilt, wenn kein Magnetfeld vorhanden ist, mul man fiir
die Giiltigkeit der Foxxer—Pranck-Gleichung bei Anwesenheit von Magnetfeldern zunichst annehmen, daf
hp < Feyros WO Tgyro den Gyrations-Radius der Elektronen bedeutet. Man erhilt mit ryyo=mev ] ¢/ (e B),
wenn man v| = (2kT./m.)"* setat,

hp/regro =B/ [c(8 7t ne me) *] =220 B/n,".

Von P. Scuram (miindl. Mitteilung) ist gezeigt worden, daf} die Foxker—Pranck-Koeffizienten auch
noch fiir hp=srgy, gelten und dafl man fir hp>rey,, statt hp die Grofle rgyr, zum Abschneiden der
divergenten Integrale verwenden kann.

Da hier nur der Spezialfall eines Zwei-Komponenten-Systems mit Ionen und Elektronen betrachtet
wird, treten in Gl. (1) nur zwei Verteilungsfunktionen, f¥(u”,x,¢) und f©® (u®,x,¢) auf. (Die Ab-
hingigkeit von Ort und Zeit wird nicht immer explizit angegeben.) Wir fiihren die Pekuliargeschwin-
digkeiten w und W ein und schreiben ohne Einschriankung der Allgemeinheit

f(i)(u(i)a X, t) =F(W7 X, t)’ f(e)(u((‘), X, l) :f(wa X, t)' (2)
Damit folgt fiir das StoBglied der Elektronen-Komponente
1 (3f) _ 3 Sh(w)] 1 w)
Tg(iat )st N —Qawu {f(w) : 'ui} 2 aw Quw, V(w) aw aw J (3)
g me) O aH (w— d) 1 32 326 (w—d)
+(1+E)a P(w) 3d, J+'2 B, [f( W) —52.34, }
Fiir die Ionen-Komponente erhilt man
1 (OF\ ) m), 1 Ch G(W)
7‘?(’8’}])5,; =25y (F(W W, J PR [F(W) oW ] (4)
h(W+d)] 1 32 32 g (Wid)
<1+ )SW'{F(W) d“*] 2 3w, oW, [F(W) - 3d, dd, J
In den beiden letzten Gleidlungen ist ‘
F(W’) /
h(w) = dw H(W) = - dW,
- | e W= | 15
gw) = [|w-w |f(w') dw’, CW)=[|W-W|[FW) W,

und entsprechend A(W+d), H(w—-d), g(W+d) und G(w—-d).

4 L. Serrzer, Physics of Fully Ionized Gases, Interscience, New York 1956, S. 73.
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Die Ableitungen nach w, bzw. W, der Funktionen, die von w —d bzw. W + d abhingen, sind in die-
sen beiden Gleichungen durch Ableitungen nach d. ersetzt worden. Man kann dies tun, wenn die d. = 0
sind. Sind eines oder mehrere der d. =0, so mufl man erst die Ableitungen bilden und darf erst dann
diese d. =0 setzen. Es bedeutet dies also keine Einschrankung der Allgemeinheit.

Es sollen jetzt die StoBmomente berechnet werden. Da in den Stofitermen alle Groflen Ableitungen nach
den Geschwindigkeiten sind, folgt unmittelbar, dal das Stofmoment nullter Ordnung verschwindet. Beim
Stolmoment erster Ordnung muf} die Summe aller Terme, welche von Stéflen zwischen gleichartigen Teil-
chen herriihren, Null ergeben. Es 1dft sich leicht nachpriifen, dafl dies der Fall ist. Das Stomoment erster
Ordnung enthilt also nur Terme, die die Wechselwirkung mit der anderen Komponente beschreiben. Fiir

die Elektronenkomponente erhéilt man

1 of . me 3 OH (w— d) 32G(w—d)

fﬂwa(at,,)st dw = (1+ ;)Jw = [f(w) = ]dw+ jwaﬁf [f( g dw.
(3)

u
Man kann voraussetzen, daB f(w) fiir |w |— c mindestens exponentiell verschwindet. Durch partielle
Integration verschwindet das zweite Integral in Gl. (5). Die Ableitung nach d. kann man mit der Integra-
tion tiber w vertauschen, so dal man fiir das StoBmoment erster Ordnung der Elektronenkomponente

schlieBlich den Ausdruck

n

SO i)a f i) F(W)

€= -T, (mi + me) 3d, | w— W — d dw (6)
erhilt. Im Gesamtsystem Elektronen plus Ionen darf sich der mittlere Teilchenimpuls durch Stofe nicht
andern. Es muB} also die Beziehung

&P +&P =0

gelten. Das ist auch der Fall, wie man leicht nachpriifen kann.

Das StoBmoment zweiter Ordnung enthélt auch Terme, welche die Wechselwirkung zwischen gleich-
artigen Teilchen beschreiben. Nach #hnlichen Umformungen wie bei der Berechnung von & erhilt
man fir diesen Anteil (wir zerlegen @ag = @(e )+ &%)

r~(ee) F J‘J\f o { _3 7(w —W, )(wﬂ w,g)
w— w\ lw— w2

Fir die Ionen gilt eine entspredlende Formel. Die Spur S dieses Tensors, welche die Anderung der
mittleren thermischen Energie + m,(w?) der Elektronen durch StoBe untereinander beschreibt, verschwin-
det, wie dies auch sein muB. Der Anteil &3’ des StoBmomentes zweiter Ordnung der Elektronen, wel-
cher von den Stoflen mit den Ionen herriihrt, ist

G = —Ty () = Jwgf(w)H(w—d) dw +
r, 2t

me 3d, dd

dw dw’.

(s?

aadﬁ jwaf(w) H(w—d) dw

a

A 7jf(w)0(w—d)dw.
Ganz analoge Formeln gelten fir S’ und & . Die Ausdriicke fiir die StoBmomente dritter Ordnung
werden etwas ldnger; wir wollen sie an dieser Stelle nicht explizit angeben.

Es ist zweckmiBig, fiir die in den Stofmomenten auftretenden Integrale folgende Abkiirzungen einzu-
fithren

,pa[,,.;ﬁwmﬁ_, 160 102 4oy qu, ﬂg;;___:fjwawﬁ... (10, =) (05 —w5)_fqpy) f(ap’) dw dw’
lw—

(7)

und entsprechend fiir die Ionenkomponente ®os... und @} . . Ferner sei

Zigs (d) =H waws. .. Wy Wo... 1 i,,( )dw dw (8)
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und i (d) = [[wawp.. . Wy Ws...|w—-W—d|f(w) F(W) dw dW. (9)
Beachtet man, daf}
[f(w) Hw-d) dw= [ F(W) h(W +d) dW

und [fw) Gw—d) dw= [ F(W) g(W+d) dW ist,
so erhélt man fir die StoBmomente folgende Formeln:
I R (C = ) (104), (10b)
R S |
- Tonason 21, 1 2% ),
& =t flpady -3 02+ aiﬁ‘g; —(1+ 23] s @+ @) aoe
= e letn-s0r+ S8 +(1+ Z) 2 4B+ DAL} 10D

[#(a, )] bezeichnet den Ausdruck, den man erhélt, wenn man in der ersten eckigen Klammer die Indizes
permutiert, wobei statt £, 7 die Indizes a, y symmetrxsch auftreten.

Bildet man die Spuren der beiden Tensoren ©() und S, so folgt:
Iy 3y

S a Xa i nj a2 Yy 4 mj a l
s _ Tof 8 =) _ !
“ " me | 3d, 3d, (1+ ) 3d, } und - @ =\ 5434, +2(1 ) sr W (12)

(O

Wendet man den Laprace-Operator 0%/ (Oda9ds) auf yw(d) an, so erhilt man 2y, wie man mit Hilfe
der Gl. (9) leicht sieht. Ferner 1dBt sich die Differenz (2%?/0da) — (Cye/Sda) auf folgende Weise aus-
driicken:

e 324 ) (Wo—we+d,) —

— = A= az
T P wldl f(w) F(W)dwdW = —y—d. 3, " (13)

Setzt man dies in die Summe der Gln. (11) und (12) ein, so folgt:
F 0+ 1 €l =d. €Y (d). (14)

Die linke Seite dieser Gleichung bedeutet die Anderung der thermischen Energie beider Komponenten durch
StoBe. S ist die Impulsiibertragung von einer Komponente des Plasmas zur anderen. Da d fiir n =N
proportional zum elektrischen Strom j, und fiir kleine Diffusionsgeschwindigkeiten S (d) ~da wird,
bedeutet in diesem Fall die rechte Seite die dem Plasma durch Onmsche Verluste zugefiihrte Warme. Die
thermische Gesamtenergie des Systems andert sich infolge von St6Ben also nur dann, wenn Strome flielen.

Anders ist die Situation jedoch, wenn man nach der Anderung der thermischen Energie nur einer
Komponente, etwa der Elektronen, fragt. Zunichst kann man in Gl. (11) die Funktion Sy+/3da mit Hilfe
von Gl. (13) eliminieren und erhalt

) Iy Sy . [3xr | me x 3y
== me Jld ad, k T }ﬁ?(d“ 90, © B, +Z”}" (150
Die eckige Klammer hat die GroBenordnung m./m; gegeniiber dem ersten Term in der geschweiften Klam-
mer. Bei (me/m;) [y +da(3y/3da) + (S%%/Cda)] ist das offensichtlich, fiir 3y*/3da wird dies an spiterer
Stelle gezeigt (Abschn. 5). Wenn d =0, so erhdlt man also eine um m;/m.-mal langsamere Energieiiber-
tragung von einer Komponente des Plasmas an die andere, als fiir den Fall d # 0 oder im Vergleich zur
Impulsiibertragung. In Féllen, in denen Stréome im Plasma auftreten, wird man die eckige Klammer in
Gl. (16) vernachlassigen konnen. Das gilt jedoch nicht fiir die Ionenkomponente, da bei dieser auch das

o
( ?)
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Stromglied von der Ordnung I'¢/m; ist. Es ist zweckmiBig, alle StoBmomente 2. Ordnung in eine zu

Gl. (15) analoge Form zu bringen. Man erhalt

(9)_ . af
S {(péag 39% 3 ad 8 i, —20apx—dg ad —do adﬁ}
74

r, 2y
+ (s, 2001 (4 5f
F ( Ry

und

C&ﬁ) 1¢6aﬁ—3 @a

Es stellt sich nun die Frage, wie man die in den
StoBmomenten auftretenden Funktionen ¢, ¥, @, O,
7 und v durch d und die Momente pag, gas,, usw.
ausdriicken kann. Da die Verteilungsfunktionen
f(w) und F(W) quadratisch in den Integralen auf-
treten und die Geschwindigkeiten auch im Nenner
stehen, ist es nicht moglich, direkt die Abhangigkeit
der Stofmomente von den Momenten anzugeben.
Eine Moglichkeit jedoch ist der Umweg iiber die
Reihenentwicklung der Verteilungsfunktion nach
Hermrteschen Polynomen. Die Theorie dieser Ent-
wicklung ist fiir ein Ein-Komponenten-System aus-
fiihrlich von Grap diskutiert worden °.

3. Entwidklung der Verteilungsfunktion
nach Hermiteschen Polynomen

Die Verteilungsfunktion f(w, x,t) soll durch fol-
gende Reihe dargestellt werden:

fw,x,t) =c(x,t) exp{ — & buu (X, ) wyw,}
[a*(x,2) +a; (x,0) PV (W) +a, PR (w) +...].

Die P™M(w) (N=0,1, 2,...) sind die iiber der
Gewichtsfunktion

fow,x,t) dw=c(x,1) -
exp{—3bwu (X, 1) wy wu}y dw

aufgebauten Orthogonalpolynome der Ordnung N.
by und a,,, @mui,... sind in allen Indizes
symmetrische Tensoren. Die quadratische Form
b,u(x,t) wyw, stellt Scharen von ahnlichen Ellip-
soiden dar. (Diese Verallgemeinerung der kugel-
symmetrischen Gewichtsfunktion ist schon von A.
ScuLiTER diskutiert worden.) Die Parameter ¢ und
b,. sollen so bestimmt werden, dafl die Gewichts-
funktion fy(w) die gleichen Momente der Ordnung
null, eins und zwei hat, wie die Verteilungsfunktion

5 H. Grap, Commun. Pure Appl. Math. 2, 331 [1949].

* 54, 3dy

(16)
o g} =T o2+ ) +O)
+ sy + o) ol
f(w) selbst, also
[ fodw =n(x,t),
Jwafpdw =0, (1)

m [ wawg fo dW = pas .
Wegen der Symmetrie der b;; kann man die quadra-
tische Form b,, w, w, immer durch eine Orthogonal-
transformation auf Diagonalform bringen. Es sei

3
wu= > Wi Wi
i=1

diese Orthogonaltransformation, deren Koeffizien-
tenmatrix 2.i(xX,¢) von Ort und Zeit abhingt. Da
Det (i) =1 ist, folgt dw = dw . Damit erhilt man
fir die Gewichtsfunktion

fo(w) dw =c(x,t) exp{ — +b2@;2}dw. (2)

Hier sind 6,2, 5,2, b, die drei Diagonalelemente
des Tensors b., nach der Transformation. Es gilt

3
bag= > Wai Wpi b2= Wai Npib2.
i1

(Die Summenzeichen bei Summation iiber die latei-
nischen Indizes werden wir weglassen. Es ist zu be-
achten, dafl der Summationsindex auch ofter als
zweimal auftreten kann.)

Aus den Bedingungen Gl. (1) folgt dann

el ) = {7 Bibabi. (3)

1
pag= 0(X, 1) Wi Ui g
1
Multipliziert man die zweite dieser Gleichungen mit
bia und kontrahiert tiber a, so folgt
bia pas =0 ag (4)

bas/0 ist also die Reziproke des Tensors pas .
Fithrt man statt der Geschwindigkeit w dic di-
mensionslose Geschwindigkeit

€ ={C1, 00,83 = {11, baie, byivs}
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ein, so erhalt man aus Gl. (2) fiir die Gewichtsfunk-
tion
n(x,t)

) expl - £%/21dE. (5)

Die zu der Gewichtsfunktion (2 ) ~":exp[ —&?/2]
gehorenden Orthogonalfunktionen sind bekanntlich
die Hermiteschen Polynome. (Uber deren Verallge-
meinerung auf N Dimensionen vgl. Grap, Note on
N-Dimensional Hermite Polynomials®.) Die Her-
miteschen Polynome bis einschliefllich vierter Ord-
nung sind

fo(w) dw =

H(O)(g)

HP (€) =

7‘157)(?;) =Cl Cj—éu,
5}2(@ = thCk_(sz ]7»+C] ik +§L z])
High (@) =6 88rG— (G0 + 6 lndu+Ci 5o

+ i Chou+Ci 80 + 8k 81 0i)
+ (63 0+ O 6jl+ 01 9jr) -

Diese Polynome sind orthogonal zueinander auch
in bezug auf die Kombination der Indizes bei glei-
cher Ordnung. Fiir die Reihenentwicklung der Ver-
teilungsfunktion ergibt sich damit

n(x, 1)

55T exp[ — £%/2] 6)
‘la+a; HE'”(C) + a;; }lg';‘?)(C) + @i }lg?k) +os .] dC-

Die a, a;, a;j, ... sind die von Ort und Zeit abhén-
genden Fourier-Koeffizienten der Verteilungsfunk-
tion f(w, X, t). Der Koeffizient der Ordnung N lafit
sich durch eine Linearkombination von Momenten
der Ordnungen N < N darstellen. Da die Gewichts-
funktion f,(w,x,t) die Gl. (1) erfillt, sind die
Fourier-Koeffizienten der drei niedrigsten Ordnun-
gen, a, a; und @;;, eindeutig bestimmt. Man findet

fw,x, 1) dw =

a=1,a;=0, q;=0. Man erhélt dann
_ 4 _ 72
fw,x, 1) dw = (23)% exp[ — §%/2]
(1 +aHRG +...1d8.

Wir hatten schon oben gesagt, da} man das unend-
liche System von Momentengleichungen abbrechen
mul, wenn man konkrete Fille behandeln will. Die
konsequenteste Art abzubrechen scheint zu sein, daf3
man in der Orthogonalentwicklung Gl. (6) die Ent-
wicklungskoeffizienten ab irgendeiner Ordnung
N +1 streicht. Man kann dann das in der N-ten Mo-
mentengleichung vorkommende Moment der Ord-

8 H. Grap, Commun. Pure Appl. Math. 2, 325 [1949].

F. HERTWECK

nung N +1 durch die V ersten Entwicklungskoeffi-
zienten ausdriicken, d.h. durch die N niedrigsten
Momente.

Hier sollen die Entwicklungskoeffizienten 4. und
hoherer Ordnung vernachldssigt werden. Eine wei-
tere Vereinfachung erhélt man, wenn man

aiji =% (a; Ojz + a; O + ay, 0)) (7)

setzt. Man erhdlt damit die von Grap eingefiithrte
»13-Momenten-Néherung“. In dieser Naherung wird
der Drucktransporttensor durch die drei Komponen-
ten des Warmestroms ausgedriickt. Im Hauptachsen-
system sind diese proportional zu ¢;. Wenn man
Gl. (7) z. B. uber j, k kontrahiert, so folgt
@i = 3 a; .

Dies gilt fir beliebige Vertauschungen der Indizes.
Die a; werden so bestimmt, dafl die Naherung Gl.
(7) bei Kontraktion das gleiche Ergebnis liefert
wie der volle Drucktransporttensor. Da die Koeffi-
zienten erster Ordnung immer null sind, koénnen
die in Gl. (7) auftretenden a; nicht mit diesen ver-
wechselt werden. Setzt man Gl. (7) in Gl. (6) ein,
so erhdlt man als Naherung der Verteilungsfunktion

fw, 2, 0) = B expl - §2/2] @
[1+ai(x,2) &i(82 —5)]1dE.
Fiir das Moment dritter Ordnung folgt dann
|ty trexpL - 820 1+ LG -5)] A8
= qappy+ g6 Pay+ gy Pab s 9)
wobei ga=Wai (2 a;/b;). (10)

Der Vektor g. hat die Dimension einer Geschwin-
digkeit. Sie gibt an, wie schnell thermische Energie
durch Diffusion transportiert wird. Durch Kontrak-
tion von gag; iiber zwei Indizes erhdlt man fiir den
Warmestromvektor

Sa= )Qaﬂﬂ=7pqa+payqy (11)

Hierbei ist 3 p=pss die Spur des Drucktensors. In
der Momentengleichung N-ter Ordnung tritt auch
noch das Moment (N + 1)-ter Ordnung auf. Da die
Verteilungsfunktion hier in dritter Ordnung ap-
proximiert wird, benétigt man in der Momenten-
gleichung dritter Ordnung das Moment vierter Ord-
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nung ¢,s,s, welches sich durch die Momente zweiter
Ordnung ausdriicken 1d8t. Man findet

- 1
Guprs =, (pag pss + pay pss + psr pas) .~ (12)

Durch den speziellen Ansatz Gl. (8) ist iiber alle
Momente der Verteilungsfunktionen verfiigt worden,
jedoch sind nur 13 Momente linear unabhingig. Es
gibt offenbar eine ganze Klasse von Funktionen,
welche die Momente bis einschlieBlich 4. Ordnung
mit der Naherungsfunktion Gl. (8) gemeinsam ha-
ben, namlich alle Funktionen, die sich nur in den
hoheren Momenten von dieser Naherungsfunktion
unterscheiden. Nach A. ScaLiTER kann man auch Gl
(12) postulieren und auf diese Weise das System
der Momentengleichungen abbrechen; es mufy dann
aber das StoBglied (3f/3t) 4 durch die mitgefiihrten
Momente allein (hier also bis 3. Ordnung) ausdriick-
bar sein. Das ist z. B. moglich bei dem einfachen
Ansatz  (9f/3t) st ~ (fmaxwenn—f). Der Anregung
ScuriTERs folgend, wird Gl. (12) auch von Kakppe-
LER 7 benutzt, um das System der Momentenglei-
chungen abzubrechen.

Die Entwicklung der Verteilungsfunktion iiber
einer Gewichtsfunktion von elliptischer Symmetrie
hat den Vorteil, da eine beliebig grole Anisotropie
im Druck schon durch die Gewichtsfunktion (welche
die nullte Naherung darstellt) beschreibbar ist. Ein

Setzt man
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weiterer Vorteil ist, dal in der ,,13-Momenten-
Approximation® bei elliptischer Gewichtsfunktion
nur der eine Koeffizient a; auftritt, um Abweichun-
gen von der nullten Niherung zu beschreiben. Erst
wenn Warmestrome auftreten, wird @; 0. Ein
Nachteil sind die mathematischen Komplikationen.
die auftreten konnen, insbesondere dann, wenn die
Lage der Hauptachsenrichtungen des Drucktensors
nicht unmittelbar ersichtlich ist, so dal man die
Hauptachsentransformation durchfithren muB3, oder
wenn sich deren Lage fiir Ionen und Elektronen
unterscheidet. Jedenfalls ist die Berechnung der
StoBmomente in diesem Fall schwieriger als bei Ent-
wicklung tber einer kugelsymmetrischen Gewichts-
funktion.
Fir die Ionenverteilung erhilt man

F(W,x,t) dW =

s, expl— /2]

[1+4; Z;(82-5)] dE,

wobei §, =B, Wy, usw. B W? ist die quadratische
Form By, W, W, im Hauptachsensystem, B,.; sei die
Transformationsmatrix fiir die Ionen. In vielen Fal-
len wird 2.i =B, sein, insbesondere wenn die An-
isotropie im Druck durch elektro-magnetische Fel-
der hervorgerufen wird, die ja in gleicher Weise
auf Ionen und Elektronen wirken.

exp[ — (13)

. = -zlfqaﬂﬂ,u = (?ppa#+PaﬂPﬂ#)/~0es

so erhalt man fiir die Momentengleichung dritter Ordnung in kontrahierter Form, d. h. also fiir die Warme-

stromgleichung:
S o ey By S By, 32 N
B %:; aal;‘w T ga s;:’ Pur + Pau @» (—2%: + %::) — T,
X ist definiert durch
=1 (@‘(’5‘)" =3 G —2 e ) (15)

el

<pa—319°"‘+§8 8 1,Ua+a aﬂ"ljﬂ (1+ %l:)

L aal“ %“ Oul

— Qu Lieat Op T —

}

Es bedeutet hier Ga=3/3da. Bei der Ableitung dieser Gleichung ist die aus Gl. (2.7) folgende Beziehung

91
TP =

7 H. J.KaeppeLER, Z. Naturforschg. 14 a, 1056 [1959].

= @q benutzt worden. Eine entsprechende Gleichung gilt fiir die Ionen:

re l =307+ 18,8+ BuBuyr (14 1) [ Baret Bupe— 5 7 B =" 3]

(15 a)
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4. Berechnung der Hilfsfunktionen ¢ und ¢ (bzw. @ und 0)

In diesem Abschnitt sollen die durch Gl. (2.7) definierten Hilfsfunktionen berechnet, d. h. explizit durch
die Momente ausgedriickt werden. In der 13-Momenten-Niherung treten die Funktionen @, @., 9% und
@ auf. Die entsprechenden Funktionen fiir die Ionen ergeben sich sofort, wenn man die Momente der
Elektronenkomponente durch die der Ionenkomponente ersetzt. Es sollen zunichst ¢ und @. berechnet
werden. Man kann ¢. in symmetrischer Form darstellen, indem man im Integral statt w. den Ausdruck
(wa+wa') /2 einsetzt. Transformiert man dann noch in das Hauptachsensystem, so folgt

1 1 J‘[ G+ (D) (8 dl dfCal

e Wi T & &
(Pa—sIaz Ei 2 . (1)

[7(4-1;&‘1’) 2/5 2+ (52_ 4-2,) 2/ 522_*_ (4-3_:3,) 2/532] V2

Es liegt nahe, die Substitution §;— ;=& V2 und ;+ &/ =7; V2 durchzufithren. Fiir das Volumelement
erhilt man dann d§d% =dEdw. Das Integrationsgebiet ist wieder der ganze Raum.§Z+ €2 geht iiber
in £2+ 2. Damit erhilt man

10 F(2) dgat - (gﬁexp{_ LE )} [1+a,- ﬂ%éi (@52%;)? %5)}.[1”]. m;@(‘i;ﬁ*g)}dgdn

Vernachlassigt man Glieder, die quadratisch in a; sind (diese Annahme darf man machen, da die ,,Warme-
stromapproximation® nur dann gilt, wenn fiir die Norm des Vektors a; gilt |a | < 1), so folgt fiir das
Produkt der eckigen Klammern

R(En) =1+ (ai/V2) [:(n*~5) +m(E~5) +2&(E-m)].
Es ergibt sich also aus Gl. (1)
A1 niexp[— (B+N*)21RM &) q¢ 4 9
o= Ve b @m)? jj (81 E2+P2 &+ &1 g, (2)
wobei f; =2/b,2 usw. Offenbar erhilt man @, indem man auf der rechten Seite von Gl. (2) statt 7; und

.i/V2 b; jeweils 1 einsetzt. Die Integration iiber 0 1dBt sich unter Beriicksichtigung der Orthogonalitits-
relationen leicht ausfilhren und man erhalt

o exp[—E2/2]d
= (2 ”)’/’j [By &2+B- 522'*‘/33_5;211/’
ai 1 [E*—5+2 &% exp[— E*/2]dE
bi RS T BLEEH B EP B &I
Der Typ der hier auftretenden Integrale iiber § ist in der Literatur bekannt® Man kann die 3-fache In-
tegration iiber den §-Raum auf eine einfache Integration iiber einen Parameter s zuriickfilhren. Man er-
halt fir my+my+m3>2r und m;,r>0:

&m—1 Eyme—1 Emy—1 exp[ — 22/2] dg

n2
und } Pa = —2~ g[ai

[By &3+ Pa 82+ Bs &1 1
I'(my/2) I (my/2) I' (m4/2) o(mytmytmy)[2—r+1 s2r—1(1 —s2?) (ml+m,+m,7)/72—7r—li ds
- BrT(r) ' (L7, M2 (1475 5)™/2 (1474 5) Ms/2
0

mit B=(f;+Pa+P5)/3 und ;= (Bi/p) —1. Die Grofien C und Cog sind erklért durch
Es folgt damit schlieBlich : 1 ]

S

p= VaB C (3) V2 g D(z,s) 1
und
1 1—s2 ds
2 = Wai Wpi — | — M
= %‘79[— $1Cqat $Cauqdd. (4) Cot =Kl <l V2 JHszms)’
7 0

8 I. M. Ryskik u. I. S. Grapstein, 2-I/-f-Tafeln, VEB Deutscher Verlag der Wissenschaften, Berlin 1957, S. 220.
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D=VO+7,8) (1+125%) (1+7552) .

In den StoBmomenten treten weiterhin die Funktio-
nen 9% und 9% auf. Es ist
/ f d wdw’

93 _ 2[.,, mg, (&= (;7
bi bj
£%/2] dE

|w— w |
e - &fexp[—
=n2 Wy 2[51,31' 2 7)3/2J [ﬂl 51 +ﬂ2 E2+ 5 E21°
[5aﬂC Cﬂﬂ] (5)

Vﬂ

In dem zweiten Ausdruck ist die Integration iiber 7
durchgefiihrt; ferner ist beriicksichtigt, dal &;&; im
Zihler bei der Integration ein 6-Symbol ergibt. Der
letzte Ausdruck ergibt sich nach der Integration
iiber &. SchlieBlich erhalt man nach dhnlichen Um-

M1—ai(3/3%i) 4] exp[— L%/2] - [1—4i (3/3Zi) A7] exp[—
(2 7)3 Jw—W—d|
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formungen

e 212 .
19/:77'::5[_ 1Cqat+ §Cougul - (6)
5. Die Berechnung der Hilfsfunktionen ; und y

In diesem Abschnitt werden die Hilfsfunktionen
berechnet, die in den StoBmomenten bis einschlief3-
lich dritter Ordnung vorkommen. Zunéchst ist

)F(m
1= JJ f(w )

Setzt man Gl. (3.8) und GI. (3.13) ein, so erhalt
man, unter Beriicksichtigung der Identitat

3 3 23
Hexp[ — 82/2] = = 3535 6 exp[ —

— dw dW. (1)

g%/2],

22 a4z .

Durch partielle Integration lassen sich die Ableitungen nach {; und Z; in solche nach d; verwandeln und

vor das Integral ziehen. Insbesondere gilt

(3/3¢%i) exp[—T?/2] exp[—L?/2] d
“LJ T w—W—d| dg = A ¢ 5 [w—W—d]| (28)
(3/3Zi) exp[— 2%)2] A4; 9 exp[—222]1dZ
und Aj el az - ‘"E,adj o 2b)
Mit Hilfe der Relationen Gl. (3.3) und Gl. (3.10) folgt dann
~nN 1 P . 1 P.!’? Vexp[r—(7C7+Z2)/r2] dgdZ
xX= (27)8 1-— gquay;;aval] [1+§Q:¢ax o aaaz}jj IW—-W—dl . (3)

Die gy sind von der GroBenordnung
gu~ (p/o) " | all,

wihrend man fiir Q, erhalt
Qu~ (Pl || 4] 5

|a] und || 4| seien die Normen der Vektoren a;
und 4;. Unter der Annahme, daB |a| ~ | 4| und
P~p, ist der Term mit Q. von der Ordnung
(me/m;)™ gegen den Term mit g.. Man darf also
unter noch weit schwicheren Voraussetzungen iiber
die GroBenordnungen von p, P, |a| und | 4| den
Term mit Q. streichen.

Es bleibt jetzt noch das Integral in Gl. (3) zu be-
rechnen. Zunichst soll gezeigt werden, dafl man in
der Niherung, in der man m./m; gegen 1 vernach-
lassigen kann, die Ionenverteilungsfunktion als 9-
Funktion betrachten darf. Es sei fiir diesen Zweck
angenommen, daf} beide Verteilungen kugelsymme-
trisch sind (das Ergebnis dieser Betrachtung gilt

aber auch fiir Funktionen von ellipsoidischer Sym-
metrie). Dann kann man fir den Exponenten der
Exponentialfunktion schreiben

G2y 22 b2 w2 + B2 We.
Fithrt man w; — W;=4¢; als neue Variable ein, so
erhalt man

b2w2+B2W2— b2E2 1 2 B2 -W + (b2 + B2) W2

Hier ist offenbar 52/B? von der Ordnung me/m;,
so dal man b2 in der Klammer vernachldssigen darf.
Eine weitere Umformung ergibt fiir diesen Ausdruck

b2+ B?[w + (5%/B?) §]% — (5/B?) b€
Der letzte Term ist wieder von der Ordnung m/m;
gegen den ersten, wihrend die eckige Klammer fiir
jedes feste & lediglich eine Verschiebung des Maxi-
mums der Gauss-Funktion exp[ —%B2W?] ergibt.

Die Integration iiber W liefert also (2)":. Setzt
man statt §, welches ja Integrationsvariable ist, wie-
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der w ein, so erhélt man fiir das Integral in Gl. (3)

nN j‘exp[— C22] dc' (4)

em)  |w—d|

2 (d) = [w—d]|

Fir die Funktion v erhélt man einen ganz dhnlichen
Ausdruck wie Gl. (3) und an Stelle von Gl. (4) das
Integral

1
2nN ds

v(d) = VaB ) D(x.s)
0

b
- __7/)’7 2nN ds
v (d) = — Vaf

und

Es ist zu beachten, daB die Funktionen x* und u*
explizit von d, also den Komponenten der Diffu-
sionsgeschwindigkeit im Hauptachsensystem des
Elektronen-Drucktensors, abhéngen und nicht von
d. Wenn das Hauptachsensystem mit dem gewahl-
ten Koordinatensystem nicht zusammenfallt, muf}
man die Ableitungen nach d, mit Hilfe der Trans-
formation 9[,; berechnen.

Wir wollen die Ausdriicke (pus/0e) Ou C» * und
(pur/0e) Ou O»* noch vereinfachen. Aus Gl. (2a)

folgt
Puy s»_ nN ( deexp[—T%2] d
2 O (M)”’j ro—d] o

_ nN (€*—3) exp[— T?/2] g
CEOYE '

C|w—d]|
Man kann nun §2exp[ — §%/2] durch —2(3/34)
-exp[ — £21/2] darstellen, wenn man nach der Dif-
ferentiation den Grenziibergang 41— 1 macht. Ver-
tauscht man dann noch die Integration iiber § mit
dem Grenziibergang und der Ableitung, so folgt

Pur 3B y® = —x*—dyBuy*
Qe

und I:)‘f”f Qu Oy yp* =y* —d, Qu ™.
Man erhalt damit aus Gl. (3)
x=[1+9#aﬂ+ %dfvav%taﬂ]l’ (8)
und fiir die entsprechende Formel fiir v
w=[1+ %d, 3, gu3.] ¥ 9)

Um %« zu erhalten, mufl man in Gl. (1) den Inte-
granden mit w. multiplizieren. Da man wieder
F(W) als d-Funktion auffassen kann, folgt mit der

MY

1)
s e ~Uer|-
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w*(d) = jlw dlexp[-§221d8.  (5)

Diese Integrale hingen offenbar mit den Lésungen
der Potential- bzw. Blpotentlalglelchung mit der
Dichtefunktion exp[ — $52 @2] zusammen. Man
kann diese Losungen durdl ein den elliptischen In-
tegralen verwandtes Integral ausdriicken und erhilt

fiir die Funktionen y* (d) und y* (d)

(2 ) s

(6)

147, s2 147, s2 14745

s? di? d? ds?
Flo arsbty -1 W

Substitution we=da — (da — wa)
Ya= da X = aa y.

Bei der Berechnung von 1. kann man auf dhnliche
Weise vorgehen. Mit Hilfe einer Hilfsfunktion

= [w-d[?f(w) dw,
welche die Relation 3, 3,1 =12 erfiillt, folgt
'l,Ua=da'l,U— %aa'lp .
Eine explizite Berechnung der Hilfsfunktion ) ist
nicht nétig, da . nur unter dem Differentiationszei-
chen vorkommt, so daB sich 1 wieder auf v redu-
ziert. Fir yqp ergibt sich nach dhnlichen Umformun-
gen
Xaﬂ=dadﬂx—da aﬂlp —dﬂ aaw—aaﬂ'l,l)‘%‘%aa aﬂ'l[‘}.
Fiir die in T auftretenden Terme erhilt man
damit:
04 Outa=2(day—Cavy),
aaa/"(/)y:d‘u a[u aaw,
aax,uu=2dax+dludu aax —aaw—2d,u ay aaw,
ay%a;t-ﬁzday"*‘dad a X — d,‘a‘uaaw—aa‘w.

Es bleiben noch die in &% und T auftretenden
Funktionen %2, 7* und y*, deren Berechnung etwas
schwieriger ist als die der anderen Funktionen, da
die Funktion F(W) hier nicht ohne weiteres als
d-Funktion betrachtet werden kann. Z. B. wiire dann
7*=0+0(me/m;). »* erscheint aber im StoB-
moment 2. Ordnung multipliziert mit m;/m. , so daf
es gerade auf das Glied der Ordnung m./m; an-
kommt. Das gleiche trifft fir y* im Stomoment
3. Ordnung zu. Nur %* kann vernachldssigt werden.
Nach einigen Rechnungen folgt

1= (Pau/0:) Oux+ 3% QG(P#"/Qi) Cud
+ (Pau/gi) Qv ay 8/1 x*




FOKKER-PLANCK-GLEICHUNG EINES PLASMAS

Im ersten Term kann man statt des Integrals
Gl. (1) die Funktion x in abgekiirzter Form, d. h.
mit Vernachldssigung der Ionentemperatur, so wie
sie in Gl. (8) angegeben ist, einsetzen. In den bei-
den anderen Termen haben wir x* eingesetzt, da
Glieder, die quadratisch in Q. und g¢. sind, vernach-
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lissigt werden. Ahnliche Umformungen ergeben
1% = (Pag/0) %+ Qa (Ppuf:) Ou 2*
+ Qs (Pa.u/Qi) aﬂ o+ % (Paﬂ/Qi) Qu a# X

Auch hier sind Glieder der Ordnung me/m; und
Qa gp weggelassen.

Setzt man die Ausdriicke fiir ya, ya usw. in die Gl. (2.10), Gl. (2.17) und Gl. (3.15) ein, so da} nur
noch x und v auftreten, so erhdlt man fiir die StoB momente der Elektronenkomponente

co=—To03,y,
me

@%:i—} {¢6aﬂ—3'l9'aﬂ+3 aaaﬂw —2 5aﬂx— (daaﬂ-'-dﬂaa) X},
e

E&e)=%{¢a—30§”+{f Qayw+3duduBay —2day— d“zd‘i aax—dad‘ua,‘}g+;r fwaaz+ Pau 3, }
e L Le

Die entsprechenden Formeln fiir die Ionen lauten

@9) T 5‘!‘ aa% ’
me

Qe

@9,4:%{@.,,;_3 O + 3.5 + el (Pay 84 35+ Psu 3, 3a) %

-+ 2,10: (Qa 85+Qﬂ aa) Pyv 8,4 avZ*-l‘ £e~ (Pa,u aﬂ-i-Pﬂy aa) Qv av ay X*} N

i T,
g0 = Lo

mj

0 {qﬁa_s 0% + 1 0.PwdBur*+ 2 0.8, 0a 7"
Qe 4 0e

Oa * 3 *
—*—"é;*P‘uva‘uavx R 2*9";Pa‘uQva‘uavx .

Die Funktionen x*, v*, ¥ und vy sind definiert durch
die Gln. (6) — (9) und die Funktionen ¢, @a., 9%
und 93 durch die Gln. (4.3) — (4.6).

Wir wollen hier noch einmal zusammenfassen,
welche Annahmen in diese Formeln fiir die Stof3-
momente eingehen. Die Grundannahme ist, dal die
Fokker—Pranck-Gleichung (2.1) gilt, was voraus-
setzt, dafl geniigend viele Teilchen innerhalb der
Desye-Kugel sind. Ferner darf das Magnetfeld nicht
zu stark sein.

Die Entwicklung der Verteilungsfunktion nach
Hermiteschen Polynomen gilt fiir beliebige Relativ-
geschwindigkeiten zwischen Elektronen und Ionen
und fiir beliebige Anisotropien des Drucktensors.
Die einzige Annahme iiber die Konvergenz dieser
Entwicklung ist, dal die Koeffizienten 3. Ordnung,

welche die Warmestrome beschreiben, klein sind,
d.h. |s«|< 3pVp/oe. Diese Annahme wird im
allgemeinen zutreffen. In den Gleichungen fir die
Elektronen sind die Ionen als ruhend angenommen,
d. h. Terme von der Ordnung m./m; sind gegen 1
vernachlassigt. Diese Vernachldssigung ist jedoch
nicht statthaft fiir die Ionenstoimomente. Man kann
aber in vielen Fallen fiir die Ionen eine MaXwELL-
Verteilung annehmen, wobei die Temperatur durch
die Energieiibertragung Elektronen — Ionen be-
stimmt wird.

Herrn Professor A. ScuriTer mochte ich an dieser
Stelle fiir die Anregung zu dieser und den beiden fol-
genden Arbeiten und fiir viele wertvolle Diskussionen
meinen Dank aussprechen.



